# AN EXPERIMENTALIST'S VENTURE INTO RL THEORY

Two Successes and a Failure

Al Seminar 16 Feb 2024

#### **Abhishek Naik**

with thanks to Janey, Yi, and Rich







## WHERE IT ALL BEGAN

#### Learning and Planning in Average-Reward Markov Decision Processes

#### Yi Wan \*1 Abhishek Naik \*1 Richard S. Sutton 12

#### **Abstract**

We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on us-

with it. For learning and combined methods, both control and prediction problems can be further subdivided into *on-policy* versions, in which data is gathered using the target policy, and *off-policy* versions, in which data is gathered using a second policy, called the *behavior policy*. In general, both policies may be non-stationary. For example, in the control problem, the target policy should converge to a policy that maximizes the reward rate. Useful surveys of average-reward learning are given by Mahadevan (1996) and Dewanto et al. (2020).

## WHERE IT ALL BEGAN

#### Learning and Planning in Average-Reward Markov Decision Processes

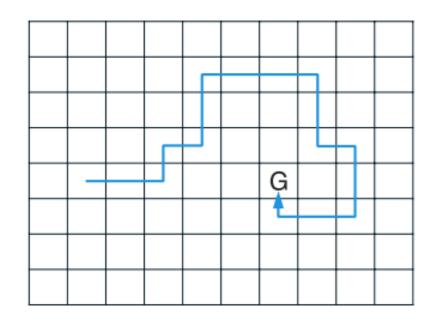
#### Yi Wan \*1 Abhishek Naik \*1 Richard S. Sutton 12

#### **Abstract**

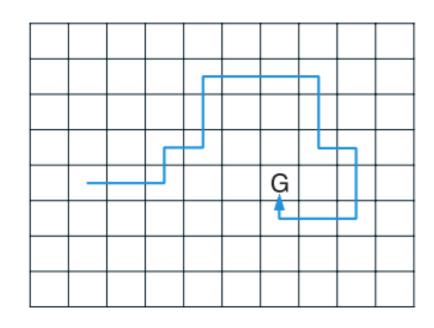
We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on us-

with it. For learning and combined methods, both control and prediction problems can be further subdivided into *on-policy* versions, in which data is gathered using the target policy, and *off-policy* versions, in which data is gathered using a second policy, called the *behavior policy*. In general, both policies may be non-stationary. For example, in the control problem, the target policy should converge to a policy that maximizes the reward rate. Useful surveys of average-reward learning are given by Mahadevan (1996) and Dewanto et al. (2020).

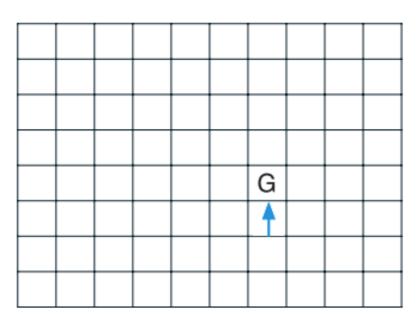
One-step tabular average-reward methods



**Trajectory** 

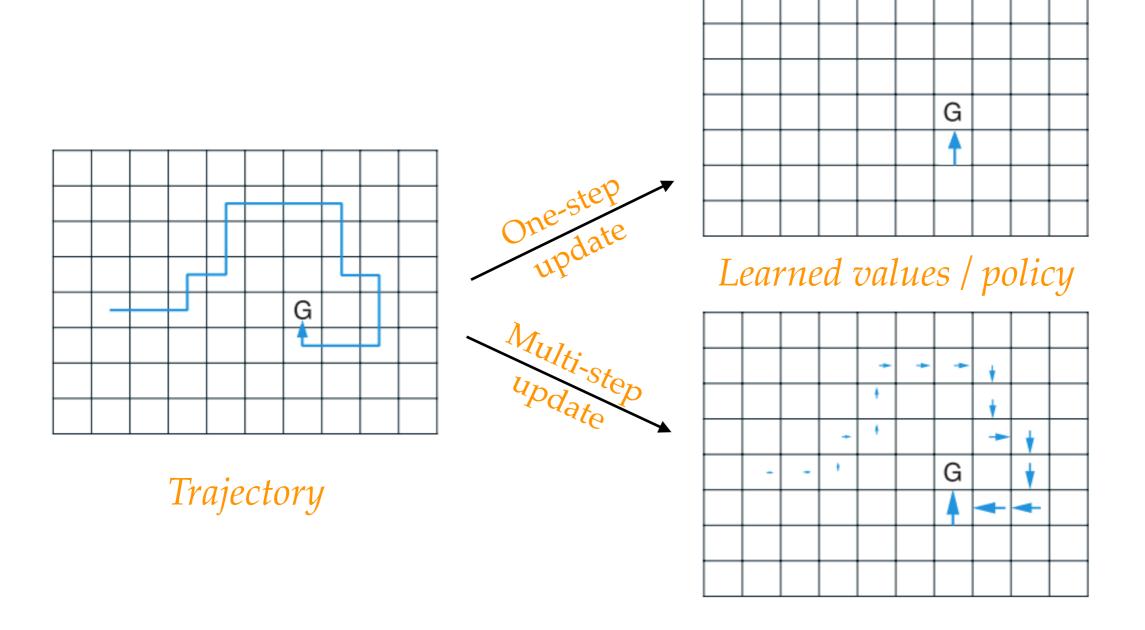


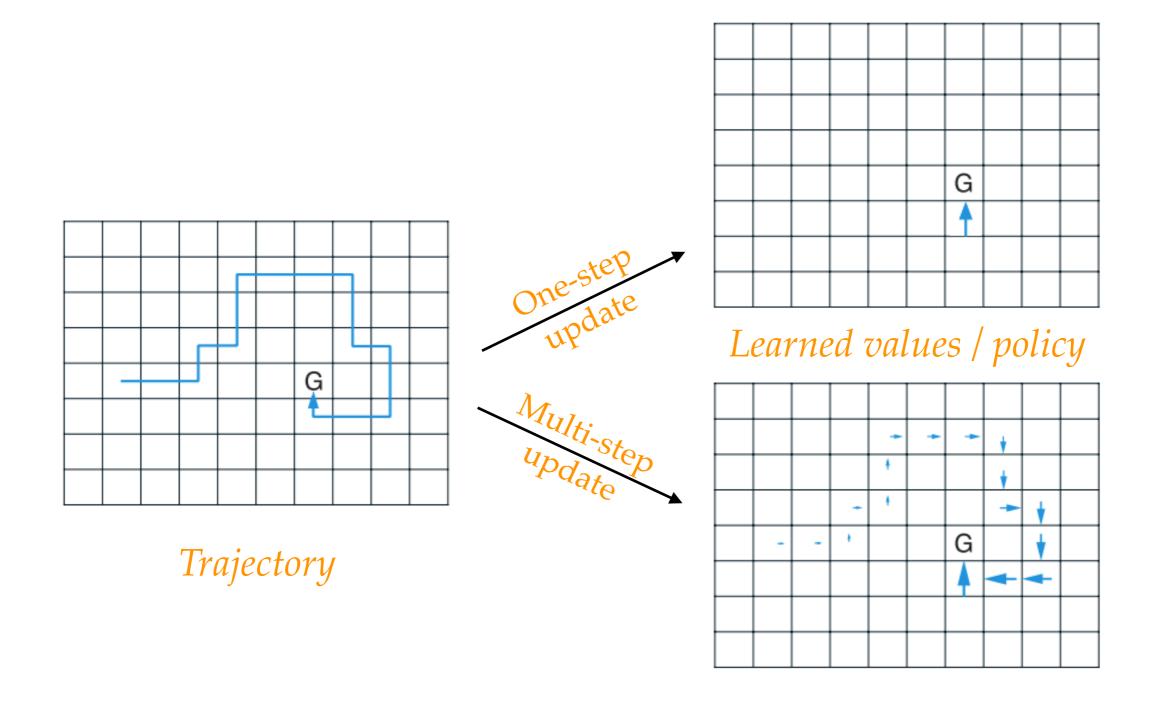




Learned values / policy

**Trajectory** 





Multi-step average-reward methods

#### PROBLEM SETTING

# THE AVERAGE-REWARD FORMULATION



 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$ 



 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$ 



$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$



$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[ \sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$



$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[ \sum_{t=1}^{n} R_{t} \right]$$

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$ 



$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[ \sum_{t=1}^{n} R_{t} \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$



$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[ \sum_{t=1}^{n} R_{t} \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$
$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$



$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[ \sum_{t=1}^{n} R_{t} \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$
$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

#### The Prediction Problem

Estimate  $r(\pi)$  and  $v_\pi$  using data generated by some policy b.

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

#### One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

#### One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

Multi-step version

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

#### One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

#### Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \, \alpha_t \, \delta_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

#### One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

#### Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \, \alpha_t \, \delta_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

#### One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

#### Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \, \alpha_t \, \delta_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

Is it guaranteed to converge...?

# INTUITIONS ABOUT CONVERGENCE THEORY



$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t [R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t]$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[ R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \qquad V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[ R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

 $V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$ 

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[ R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$
$$V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[ R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [R_{t+1} \mathbf{x}_t + \mathbf{x}_t (\gamma \mathbf{x}_{t+1} - \mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[ R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \qquad V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[ R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [R_{t+1} \mathbf{x}_t + \mathbf{x}_t (\gamma \mathbf{x}_{t+1} - \mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [\mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[ R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[ R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [\mathbf{R}_{t+1} \mathbf{x}_t + \mathbf{x}_t (\gamma \mathbf{x}_{t+1} - \mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [\mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t]$$

$$\mathbf{b}_t \in \mathbb{R}^d$$

$$\mathbf{A}_t \in \mathbb{R}^{d \times d}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \mathbf{x}_{t} \left[ R_{t+1} + \gamma \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t} \right]$$

$$V_{t}(S_{t}) = \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$V_{t+1}(S_{t}) \doteq V_{t}(S_{t}) + \alpha_{t} \left[ R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t}) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[ \mathbf{k}_{t+1} \mathbf{x}_{t} + \mathbf{x}_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t})^{\mathsf{T}} \mathbf{w}_{t} \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{b}_{t} \in \mathbb{R}^{d}$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{t} = \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{A}_{t} \in \mathbb{R}^{d \times d}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \mathbf{x}_{t} \left[ R_{t+1} + \gamma \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t} \right]$$

$$V_{t}(S_{t}) = \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$V_{t+1}(S_{t}) \doteq V_{t}(S_{t}) + \alpha_{t} \left[ R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t}) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[ \mathbf{R}_{t+1} \mathbf{x}_{t} + \mathbf{x}_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t})^{\mathsf{T}} \mathbf{w}_{t} \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{b}_{t} \in \mathbb{R}^{d}$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{t} = \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{A}_{t} \in \mathbb{R}^{d \times d}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \mathbf{x}_{t} \left[ R_{t+1} + \gamma \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t} \right]$$

$$V_{t}(S_{t}) = \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$V_{t+1}(S_{t}) \doteq V_{t}(S_{t}) + \alpha_{t} \left[ R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t}) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[ \mathbf{R}_{t+1} \mathbf{x}_{t} + \mathbf{x}_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t})^{\mathsf{T}} \mathbf{w}_{t} \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{b}_{t} \in \mathbb{R}^{d}$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{t} = \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

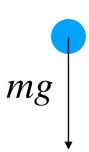
$$\mathbf{A}_{t} \in \mathbb{R}^{d \times d}$$

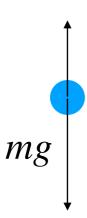
$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

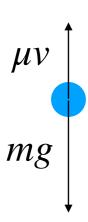
# RECAP: ORDINARY DIFFERENTIAL EQUATIONS



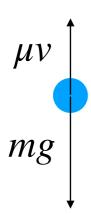






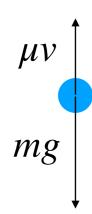


$$F = ma$$



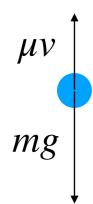
$$F = ma$$

$$mg - \mu v_t = ma_t$$



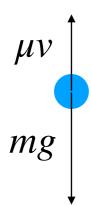
$$F = ma$$

$$mg - \mu v_t = ma_t$$



$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$F = ma$$

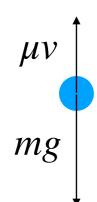


$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m} v_t$$

 $mg - \mu v_t = ma_t$ 

$$F = ma$$



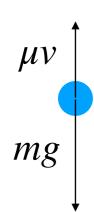
$$mg - \mu v_t = ma_t$$

$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m} v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$F = ma$$



$$mg - \mu v_t = ma_t$$

$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m} v_t$$

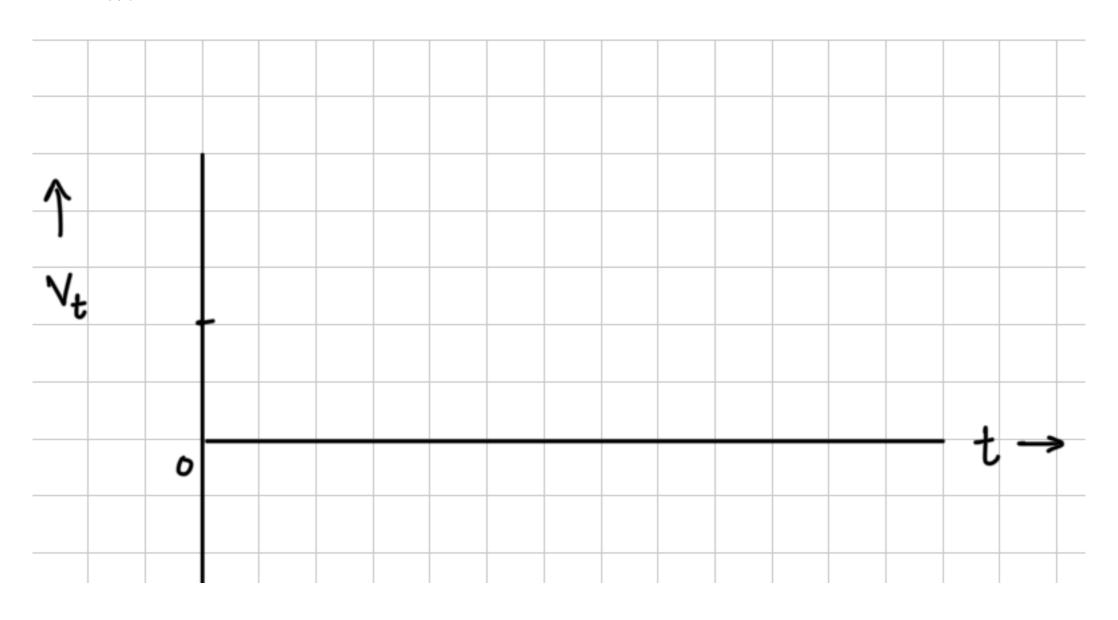
$$\frac{dv_t}{dt} = g - \frac{\mu}{m}v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t \qquad \frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

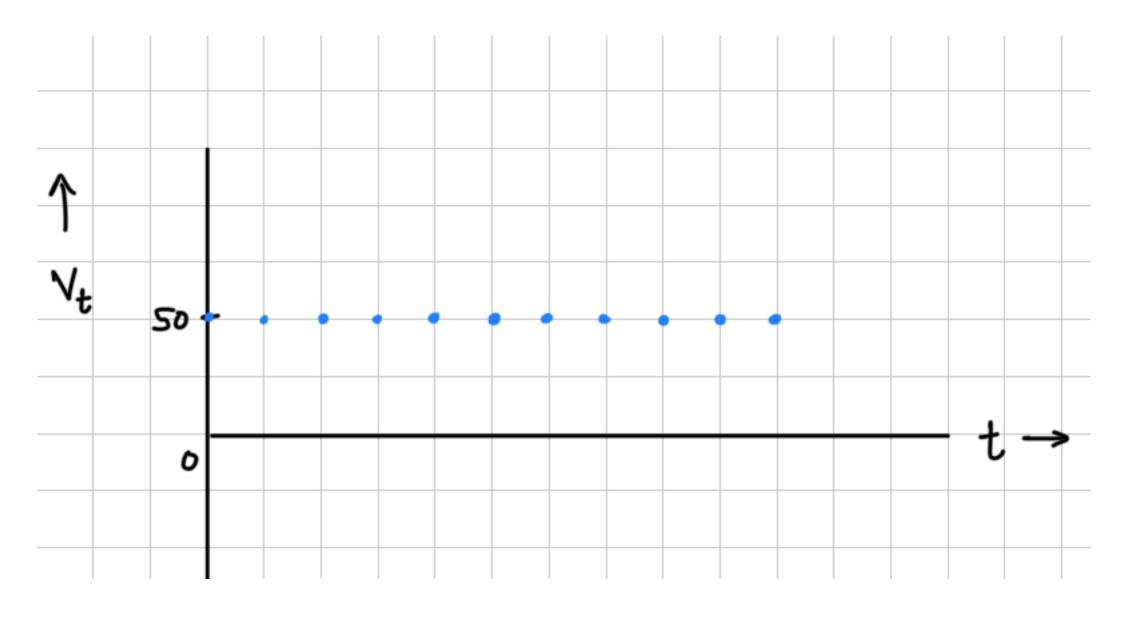
$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

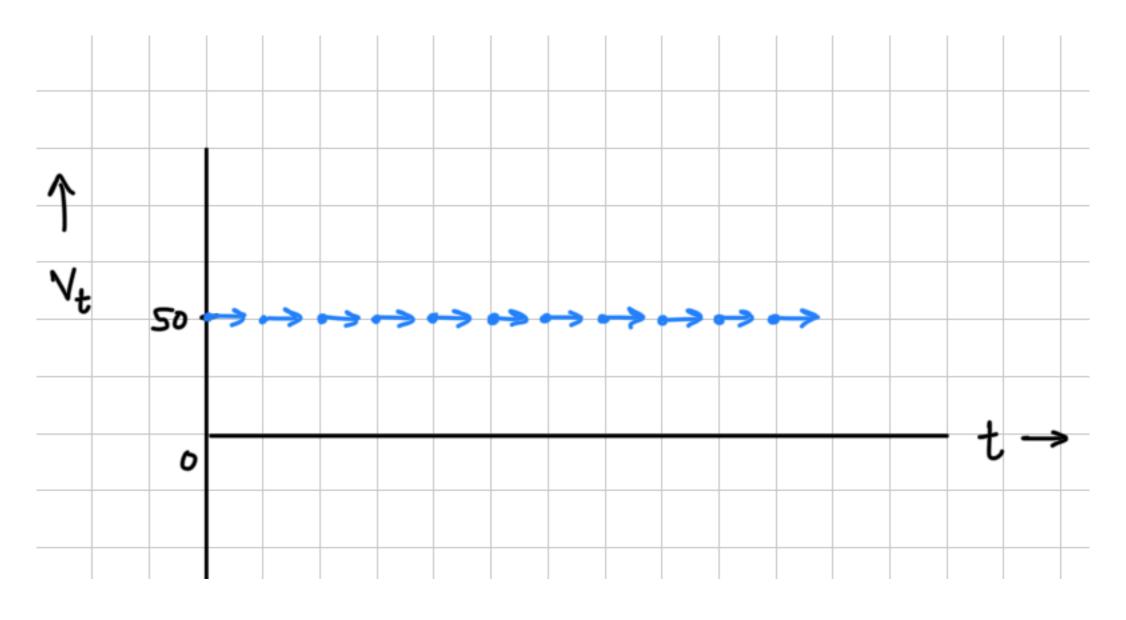
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



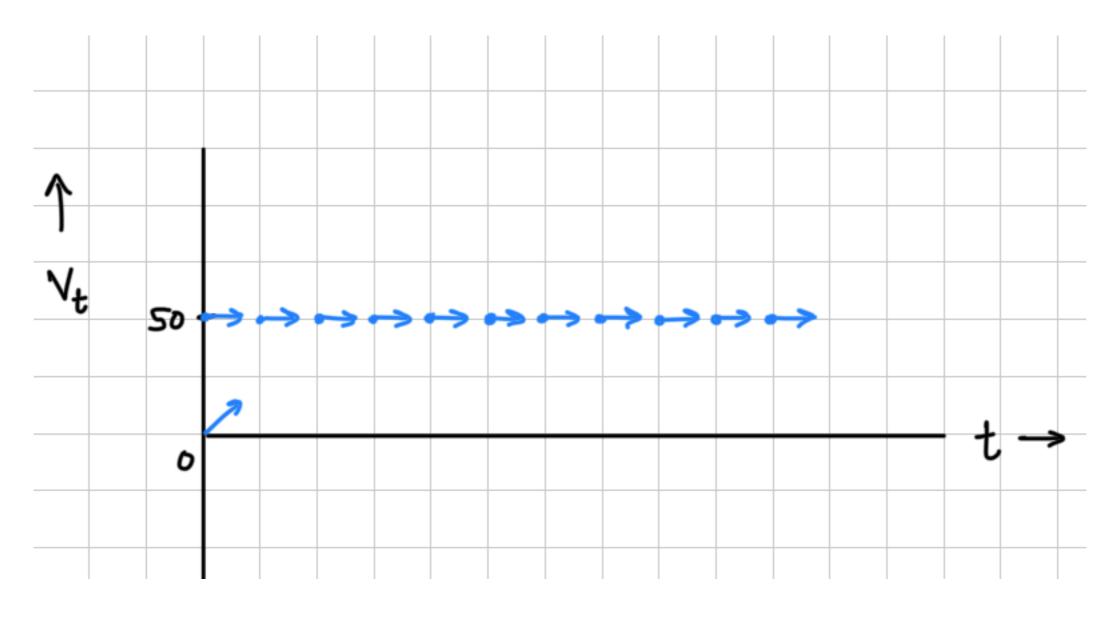
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



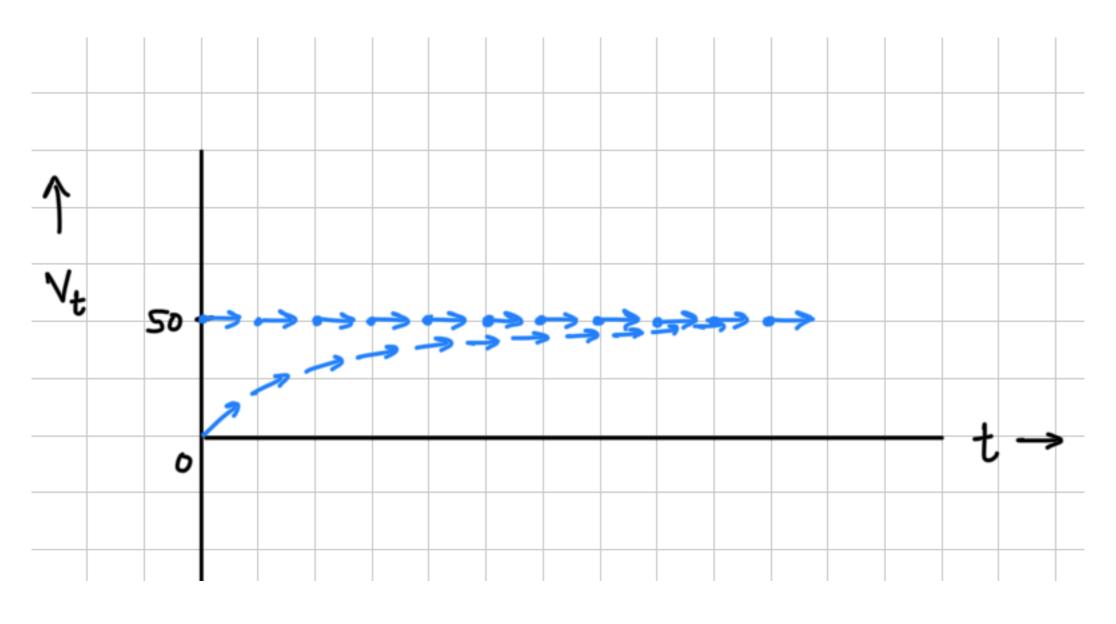
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



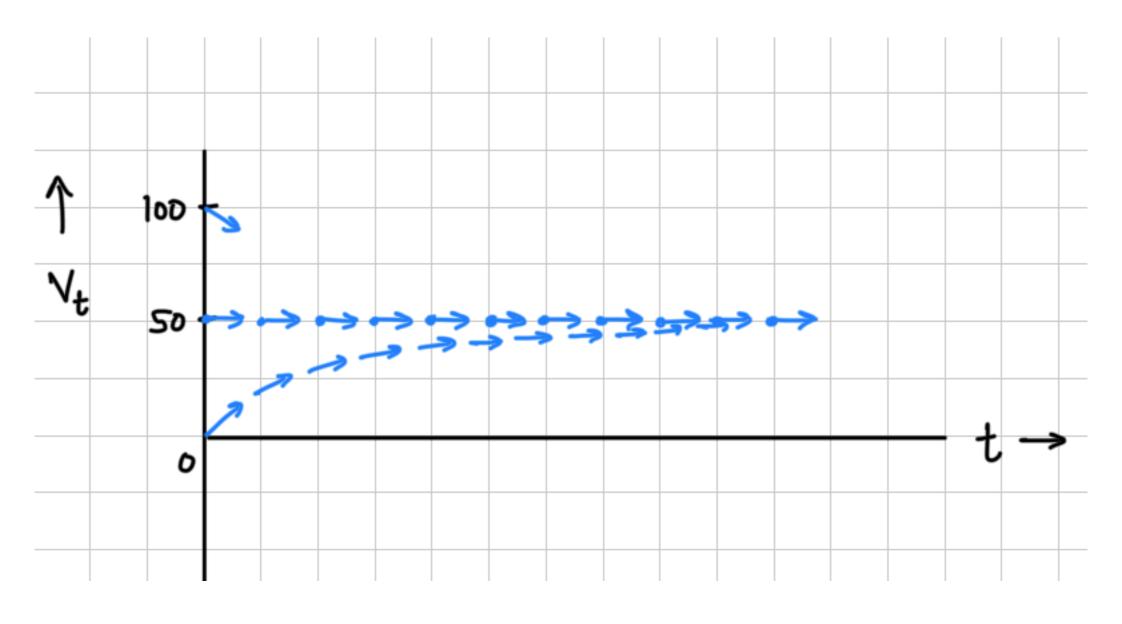
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



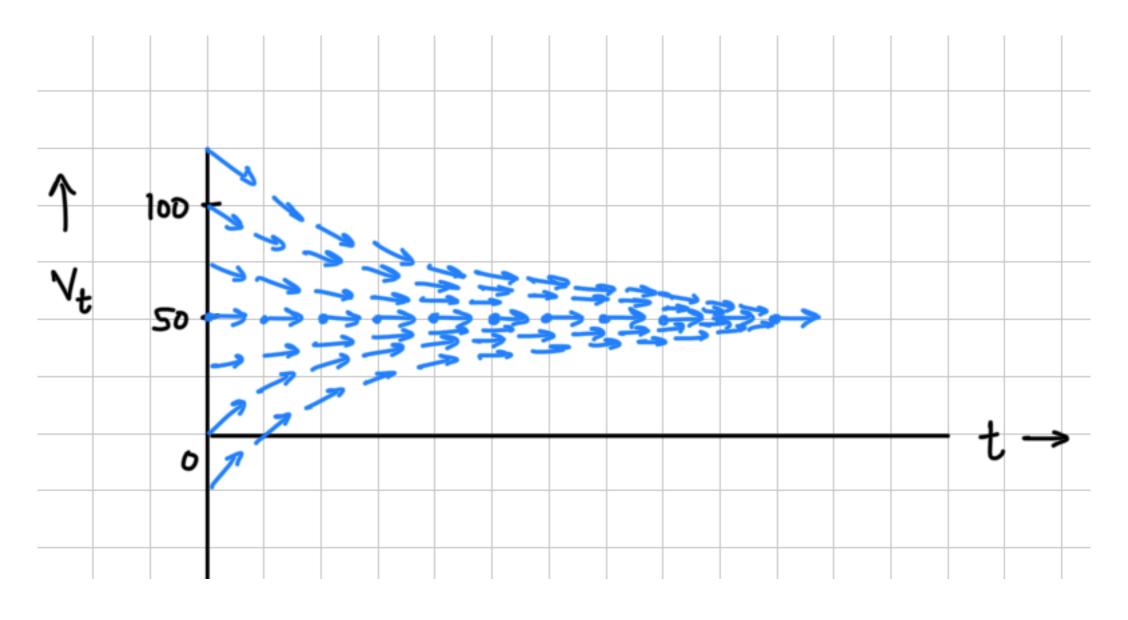
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



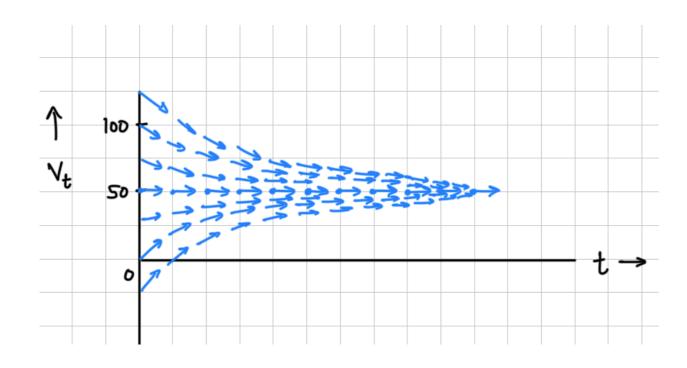
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

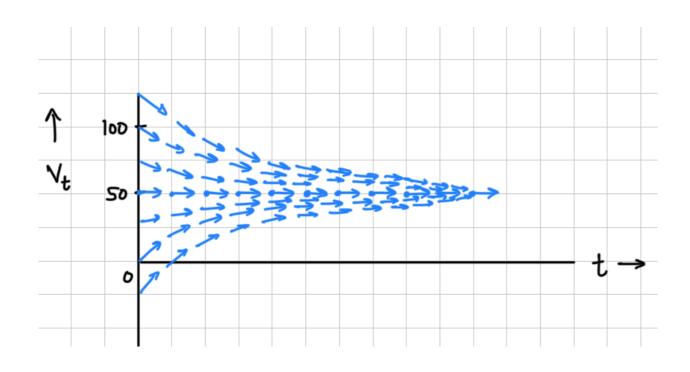


$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$



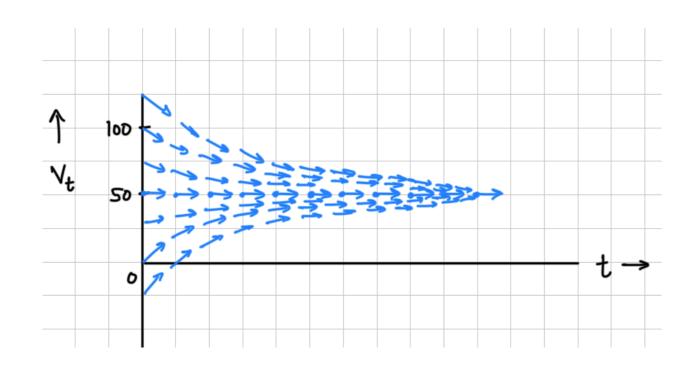
$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

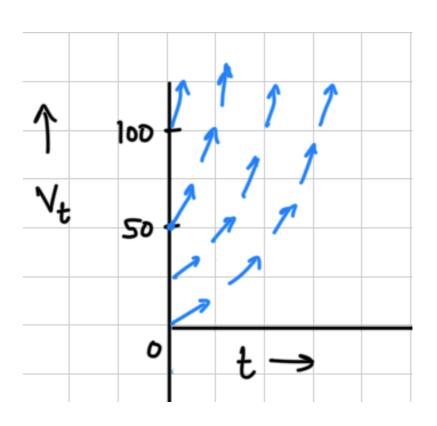
$$\frac{dv_t}{dt} = 10 + 0.2 v_t$$



$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

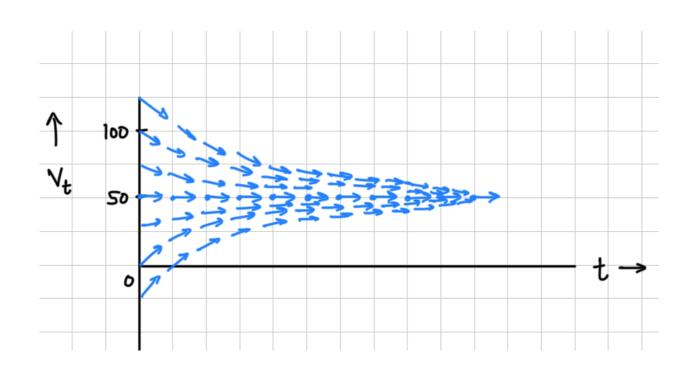
$$\frac{dv_t}{dt} = 10 + 0.2 v_t$$

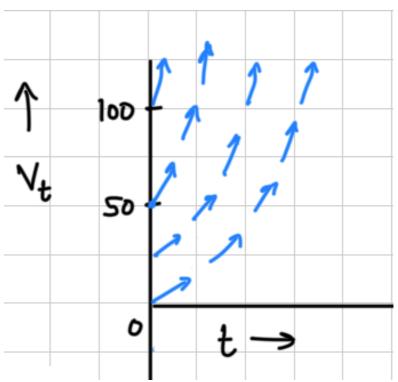


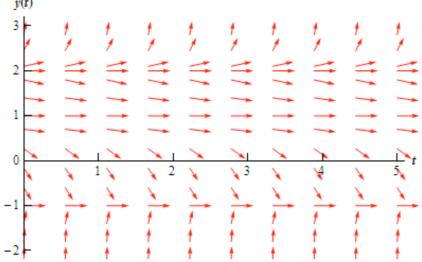


$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 + 0.2 v_t$$







$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$

All the eigenvalues of  $\bf A$  should have negative real parts.

All the eigenvalues of  $\bf A$  should have negative real parts.

That is, A is a Hurwitz matrix.

All the eigenvalues of  $\bf A$  should have negative real parts.

That is, A is a Hurwitz matrix.

#### Corollary of Khalil's (1996) Theorem 3.5

The ODE 
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable

equilibrium point  $\mathbf{w}^*$  such that  $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$ 

iff A is Hurwitz.

All the eigenvalues of  $\bf A$  should have negative real parts.

That is, A is a Hurwitz matrix.

#### Corollary of Khalil's (1996) Theorem 3.5

The ODE 
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable equilibrium point  $\mathbf{w}^*$  such that  $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$  iff  $\mathbf{A}$  is Hurwitz.

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

All the eigenvalues of  $\bf A$  should have negative real parts.

That is, A is a Hurwitz matrix.

#### Corollary of Khalil's (1996) Theorem 3.5

The ODE 
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable equilibrium point  $\mathbf{w}^*$  such that  $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$  iff  $\mathbf{A}$  is Hurwitz.

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

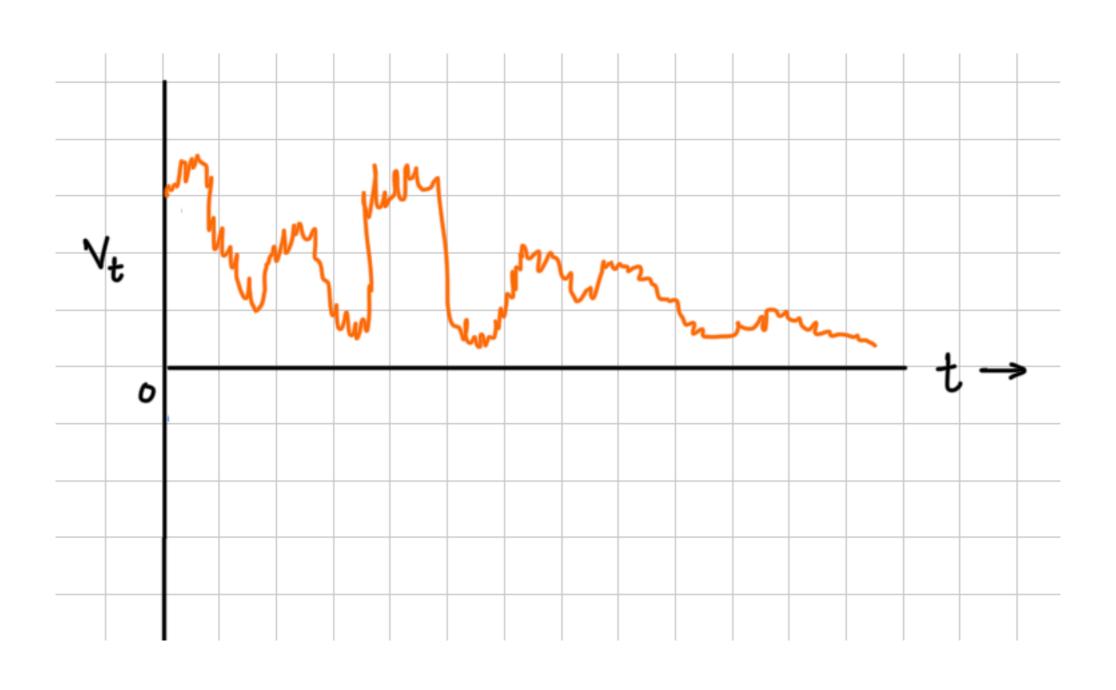
All the eigenvalues of  $\bf A$  should have negative real parts.

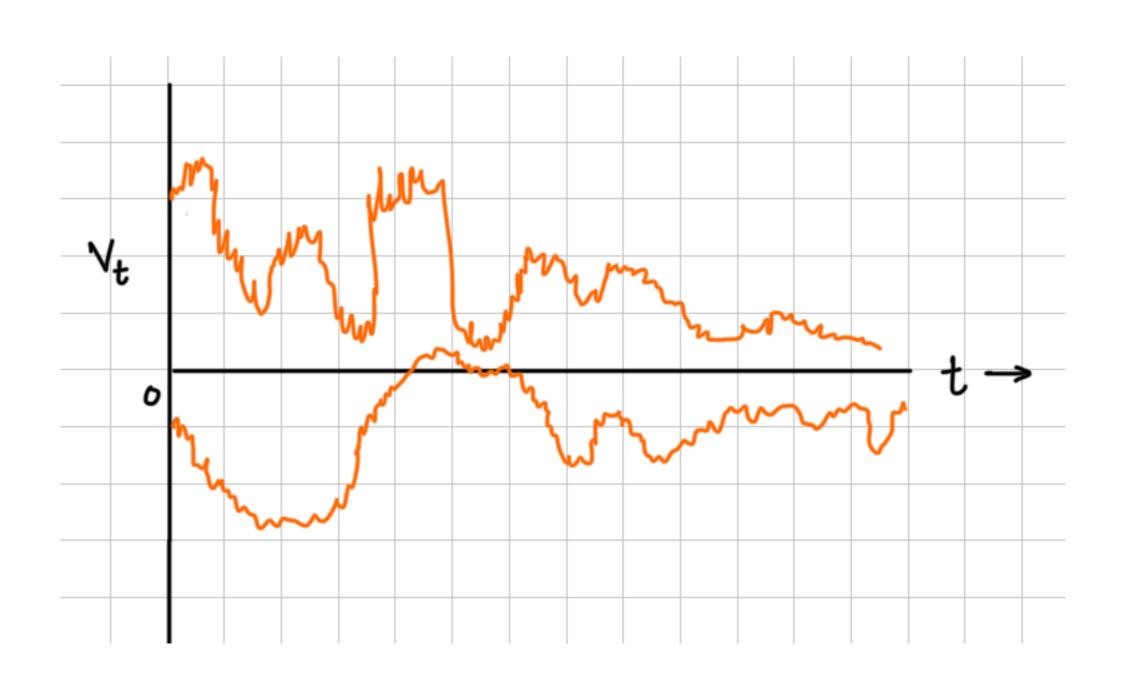
That is, A is a Hurwitz matrix.

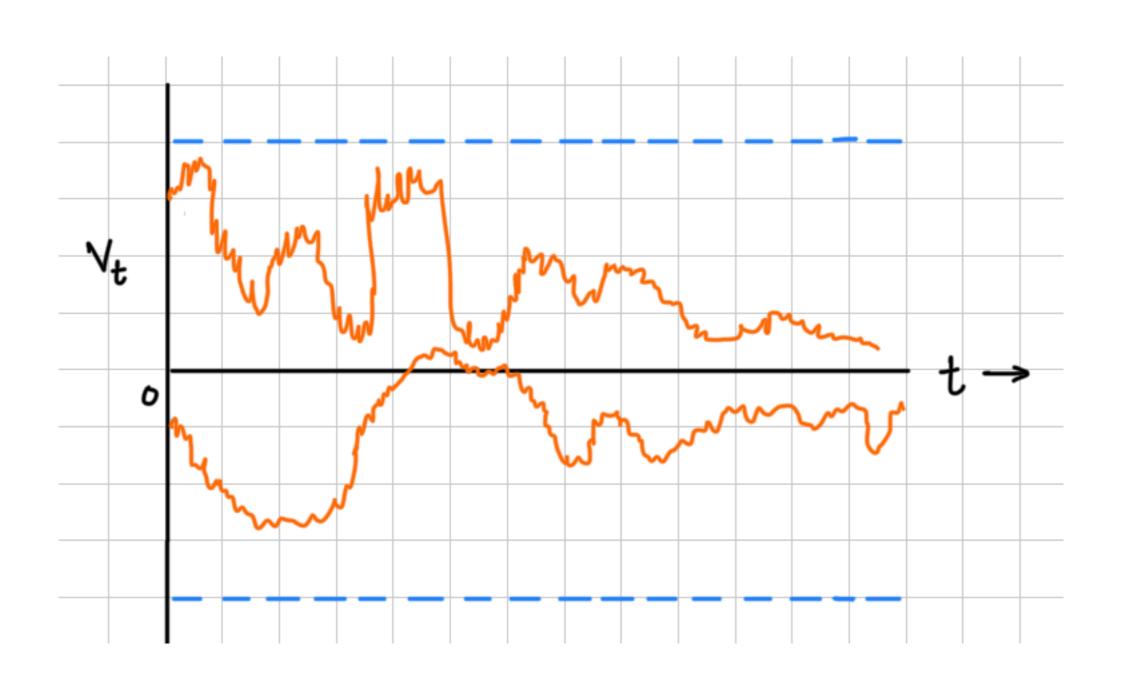
#### Corollary of Khalil's (1996) Theorem 3.5

The ODE 
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable equilibrium point  $\mathbf{w}^*$  such that  $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$  iff  $\mathbf{A}$  is Hurwitz.

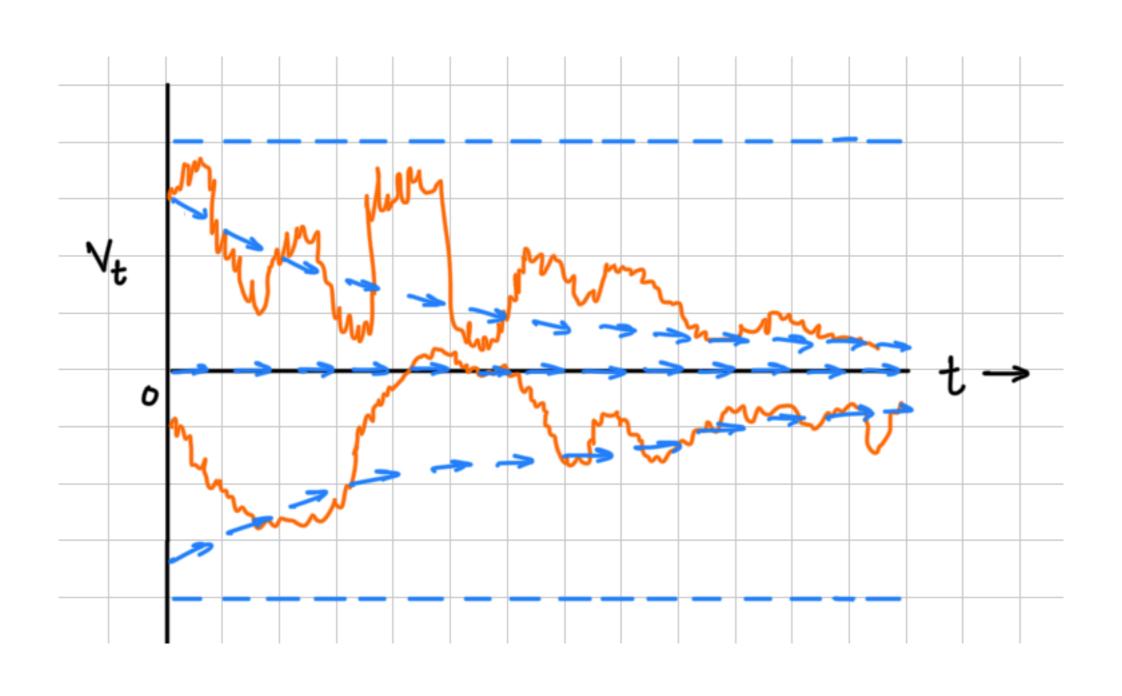
$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t \qquad \frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A} \mathbf{w}_t$$







# BEHAVIOR OF SAMPLE-BASED ALGORITHMS



(WHAT I'VE LEARNED ABOUT)

## PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

## PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

### PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

## PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

2. Show the ODE has a globally stable equilibrium point.

# APPLYING THESE TECHNIQUES TO PROVE THE CONVERGENCE OF OUR ALGORITHMS

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned} \qquad \mathbf{u}_{t+1} &\doteq \mathbf{u}_t + \alpha_t \big[ \mathbf{b}_t + \mathbf{A}_t \mathbf{u}_t \big] \end{aligned}$$
 where 
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\top \mathbf{x}_{t+1} + \mathbf{w}_t^\top \mathbf{x}_t$$
 
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\top \mathbf{x}_{t+1} + \mathbf{w}_t^\top \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\top \mathbf{x}_{t+1} + \mathbf{w}_t^\top \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\mathbf{A} = \mathbb{E}[\mathbf{A}_t] \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\top} \\ \frac{-1}{1-\lambda} \mathbf{X}^{\top} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{X}^{\top} \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \mathbf{X} \end{bmatrix}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\mathbf{A} = \mathbb{E}[\mathbf{A}_t] \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \mathbf{X} \end{bmatrix} \text{ is Hurwitz.}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[ \mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\mathbf{A} = \mathbb{E}[\mathbf{A}_t] \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \mathbf{X} \end{bmatrix} \text{ is Hurwitz.}$$

Tsitsiklis & Van Roy's (1999) Lemma 7)

**Theorem 1.2.** (Based on Tsitsiklis and Van Roy's (1999) Theorem 2) Consider the iterative algorithm of the form  $\mathbf{u}_{t+1} \doteq \mathbf{u}_t + \alpha_t(\mathbf{b}(Y_t) + \mathbf{A}(Y_t)\mathbf{u}_t)$ . Suppose the following conditions are satisfied:

- 1. The Markov chain  $\{Y_t\}$  evolving in a state space  $\mathcal{Y}$  has a unique steady-state distribution. Let  $\mathbb{E}_{\mathbf{d}}[\cdot]$  denote the expectation according to this distribution.
- 2. Let  $\mathbf{A} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{A}(Y_t)]$ . There exists a diagonal matrix  $\mathbf{L}$  with positive diagonal entries such that  $\mathbf{L}\mathbf{A}$  is negative definite.
- 3. There exists a constant C such that  $\|\mathbf{A}(Y)\| \leq C$  and  $\|\mathbf{b}(Y)\| \leq C$  for any  $Y \in \mathcal{Y}$ .
- 4. There exist scalars C and  $\rho \in (0,1)$  such that  $\forall t \geq 0$  and  $Y_0 \in \mathcal{Y}$ :

$$\|\mathbb{E}[\mathbf{A}(Y_t) \mid Y_0] - \mathbf{A}]\| \le C\rho^t,$$
  
$$\|\mathbb{E}[\mathbf{b}(Y_t) \mid Y_0] - \mathbf{b}]\| \le C\rho^t, \quad where, \ \mathbf{b} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{b}(Y_t)].$$

5. The step sizes  $\alpha_t$  are positive, deterministic, and satisfy  $\sum_{t=0}^{\infty} \alpha_t = \infty$  and  $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ .

Then  $\mathbf{u}_t$  converges to  $\mathbf{u}^*$  with probability one, where  $\mathbf{u}^*$  is the unique vector satisfying  $\mathbf{A}\mathbf{u}^* + \mathbf{b} = 0$ .

**Theorem 1.2.** (Based on Tsitsiklis and Van Roy's (1999) Theorem 2) Consider the iterative algorithm of the form  $\mathbf{u}_{t+1} \doteq \mathbf{u}_t + \alpha_t(\mathbf{b}(Y_t) + \mathbf{A}(Y_t)\mathbf{u}_t)$ . Suppose the following conditions are satisfied:

- 1. The Markov chain  $\{Y_t\}$  evolving in a state space  $\mathcal{Y}$  has a unique steady-state distribution. Let  $\mathbb{E}_{\mathbf{d}}[\cdot]$  denote the expectation according to this distribution.
- 2. Let  $\mathbf{A} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{A}(Y_t)]$ . There exists a diagonal matrix  $\mathbf{L}$  with positive diagonal entries such that  $\mathbf{L}\mathbf{A}$  is negative definite.
- 3. There exists a constant C such that  $\|\mathbf{A}(Y)\| \leq C$  and  $\|\mathbf{b}(Y)\| \leq C$  for any  $Y \in \mathcal{Y}$ .
- 4. There exist scalars C and  $\rho \in (0,1)$  such that  $\forall t \geq 0$  and  $Y_0 \in \mathcal{Y}$ :

$$\|\mathbb{E}[\mathbf{A}(Y_t) \mid Y_0] - \mathbf{A}]\| \le C\rho^t,$$
  
$$\|\mathbb{E}[\mathbf{b}(Y_t) \mid Y_0] - \mathbf{b}]\| \le C\rho^t, \quad where, \ \mathbf{b} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{b}(Y_t)].$$

5. The step sizes  $\alpha_t$  are positive, deterministic, and satisfy  $\sum_{t=0}^{\infty} \alpha_t = \infty$  and  $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ .

Then  $\mathbf{u}_t$  converges to  $\mathbf{u}^*$  with probability one, where  $\mathbf{u}^*$  is the unique vector satisfying  $\mathbf{A}\mathbf{u}^* + \mathbf{b} = 0$ .

**Theorem 1.1.** Under Assumptions 1.1, 1.2, 1.3, on-policy linear Differential  $TD(\lambda)$  (Algorithm 1) converges for all  $\lambda \in [0,1)$  with probability one:

- 1.  $\bar{R}$  converges to the unique reward rate of the target policy  $r(\pi)$ .
- 2. w converges to the unique solution,  $\mathbf{w}^*$ , of  $\Pi T^{\lambda}(\mathbf{X}\mathbf{w}) = \mathbf{X}\mathbf{w}$ .

The following error bound holds w.r.t. the centered differential value function  $\mathbf{v}_{\pi}$ :

$$\inf_{c \in \mathbb{R}} \|\mathbf{X}\mathbf{w}^* - (\mathbf{v}_{\pi} + c\,\mathbf{1})\|_{\mathbf{d}_{\pi}} \le \frac{1}{\sqrt{(1 - \tau_{\lambda}^2)}} \inf_{c \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - (\mathbf{v}_{\pi} + c\,\mathbf{1})\|_{\mathbf{d}_{\pi}},$$

where  $\tau_{\lambda}$  is a function of  $\lambda$  such that  $\tau_{\lambda} \in [0,1)$  and  $\lim_{\lambda \to 1} \tau_{\lambda} = 0$ ;

One-step off-policy Differential TD

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \rho_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$
 
$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$
 
$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\intercal} \mathbf{x}_{t+1} + \mathbf{w}_t^{\intercal} \mathbf{x}_t$$
 
$$\rho_t \doteq \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \end{aligned}$$
 where 
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$
 
$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \end{aligned}$$
 where 
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$
 
$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \end{aligned}$$
 where 
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Multi-step version?

where 
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\intercal} \mathbf{x}_{t+1} + \mathbf{w}_t^{\intercal} \mathbf{x}_t$$
 
$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where 
$$\begin{aligned} \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \end{aligned}$$

Algorithm 10ff

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\top} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

(1999) Lemma 7)

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$egin{aligned} \mathbf{0}^{ op} \ \mathbf{D}_{\pi} & (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{aligned}$$

(1999) Lemma 7)

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$

$$\eta \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$

$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$\mathbf{0}^{ op}$$
  $\mathbf{D}_{\pi}(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$ 

(1999) Lemma 7)

$$\mathbf{A}^{1o\!f\!f} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\top}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1-\lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix} \text{ is } not \text{ Hurwitz.}$$
(via a simulation analysis)

$$\eta \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$
$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$\mathbf{0}^{ op}$$
  $\mathbf{D}_{\pi}(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$ 

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\top}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix} \text{ is } not \text{ Hurwitz.}$$
(via a simulation analysis)

$$\eta \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$
$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$$

So Algorithm 1*off* can diverge...:(

One-step off-policy Differential TD

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where 
$$\begin{aligned} \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$
 where

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

Algorithm 10ff

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$
 where

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

Algorithm 10ff

#### EXTENSION TO THE OFF-POLICY SETTING

#### One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

Algorithm 2

#### Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$
 where

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

Algorithm 10ff

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t$$

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1} \mathbf{g}^{\mathsf{T}})$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t \qquad \eta > 0$$

g is a non-negative vector with at least one positive element

$$\mathbf{A} = \mathbf{D}_b (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1} \mathbf{g}^{\mathsf{T}})$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where 
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t \qquad \eta > 0$$

g is a non-negative vector with at least one positive element

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1}\mathbf{g}^{\mathsf{T}}) \text{ is Hurwitz!}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t \qquad \eta > 0$$

g is a non-negative vector with at least one positive element

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1}\mathbf{g}^{\mathsf{T}}) \text{ is Hurwitz!}$$

For any  $\lambda > 0$  there exist  $\eta > 0$  such that  ${\bf A}$  is Hurwitz.

(using the Perron-Frobenius theorem for irreducible non-negative matrices)

Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form:  $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$ .

Suppose the following conditions are satisfied:

- The process {Y<sub>t</sub>} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function  $h(\mathbf{v}, y)$  is jointly continuous in  $(\mathbf{v}, y)$  and is Lipschitz in  $\mathbf{v}$  uniformly w.r.t.  $y \in \mathcal{Y}$ .
- 3. Define h̃(v) = E<sub>d</sub>[h(v, Y)]. The limit ĥ(v) = lim<sub>c→∞</sub> h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence {m<sub>t+1</sub>} is a martingale difference sequence w.r.t. the increasing σ-fields F<sub>t</sub> = σ(v<sub>k</sub>, Y<sub>k</sub>, m<sub>k</sub>, k ≤ t), t ≥ 0 (that is, E[||m<sub>t+1</sub>|| | F<sub>t</sub>] < ∞ and E[m<sub>t+1</sub> | F<sub>t</sub>] = 0 almost surely, ∀t ≥ 0), and E[||m<sub>t+1</sub>||<sup>2</sup> | F<sub>t</sub>] < K(1 + ||v<sub>t</sub>||<sup>2</sup>) almost surely, ∀t ≥ 0, for some constant K > 0.
- 5. The step sizes  $\{\alpha_t\}$  are positive with  $\sum_t \alpha_t = \infty$  and  $\sum_t \alpha_t^2 < \infty$ .

- (i) the algorithm is stable, that is,  $\sup_t \|\mathbf{v}_t\| < \infty$ , almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE  $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$ .

Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form:  $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$ .

Suppose the following conditions are satisfied:

- The process {Y<sub>t</sub>} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function  $h(\mathbf{v}, y)$  is jointly continuous in  $(\mathbf{v}, y)$  and is Lipschitz in  $\mathbf{v}$  uniformly w.r.t.  $y \in \mathcal{Y}$ .
- 3. Define h̃(v) = E<sub>d</sub>[h(v, Y)]. The limit ĥ(v) = lim<sub>c→∞</sub> h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence {m<sub>t+1</sub>} is a martingale difference sequence w.r.t. the increasing σ-fields F<sub>t</sub> = σ(v<sub>k</sub>, Y<sub>k</sub>, m<sub>k</sub>, k ≤ t), t ≥ 0 (that is, E[||m<sub>t+1</sub>|| | F<sub>t</sub>] < ∞ and E[m<sub>t+1</sub> | F<sub>t</sub>] = 0 almost surely, ∀t ≥ 0), and E[||m<sub>t+1</sub>||<sup>2</sup> | F<sub>t</sub>] < K(1 + ||v<sub>t</sub>||<sup>2</sup>) almost surely, ∀t ≥ 0, for some constant K > 0.
- 5. The step sizes  $\{\alpha_t\}$  are positive with  $\sum_t \alpha_t = \infty$  and  $\sum_t \alpha_t^2 < \infty$ .

- (i) the algorithm is stable, that is,  $\sup_t \|\mathbf{v}_t\| < \infty$ , almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE  $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$ .

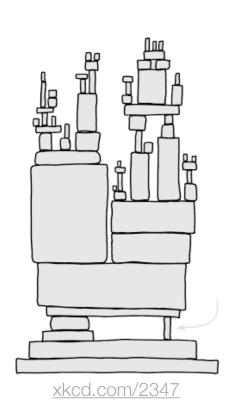
Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form:  $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$ .

Suppose the following conditions are satisfied:

- The process {Y<sub>t</sub>} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function  $h(\mathbf{v}, y)$  is jointly continuous in  $(\mathbf{v}, y)$  and is Lipschitz in  $\mathbf{v}$  uniformly w.r.t.  $y \in \mathcal{Y}$ .
- 3. Define h̃(v) = E<sub>d</sub>[h(v, Y)]. The limit ĥ(v) = lim<sub>c→∞</sub> h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence  $\{\mathbf{m}_{t+1}\}$  is a martingale difference sequence w.r.t. the increasing  $\sigma$ -fields  $\mathcal{F}_t \doteq \sigma(\mathbf{v}_k, Y_k, \mathbf{m}_k, k \leq t), t \geq 0$  (that is,  $\mathbb{E}[\|\mathbf{m}_{t+1}\| \mid \mathcal{F}_t] < \infty$  and  $\mathbb{E}[\mathbf{m}_{t+1} \mid \mathcal{F}_t] = 0$  almost surely,  $\forall t \geq 0$ ), and  $\mathbb{E}[\|\mathbf{m}_{t+1}\|^2 \mid \mathcal{F}_t] < K(1 + \|\mathbf{v}_t\|^2)$  almost surely,  $\forall t \geq 0$ , for some constant K > 0.
- 5. The step sizes  $\{\alpha_t\}$  are positive with  $\sum_t \alpha_t = \infty$  and  $\sum_t \alpha_t^2 < \infty$ .

- (i) the algorithm is stable, that is,  $\sup_t \|\mathbf{v}_t\| < \infty$ , almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE  $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$ .



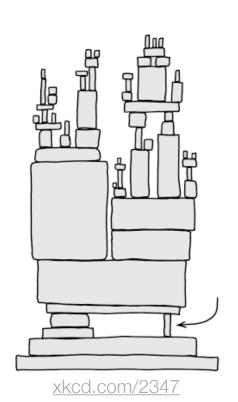
Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

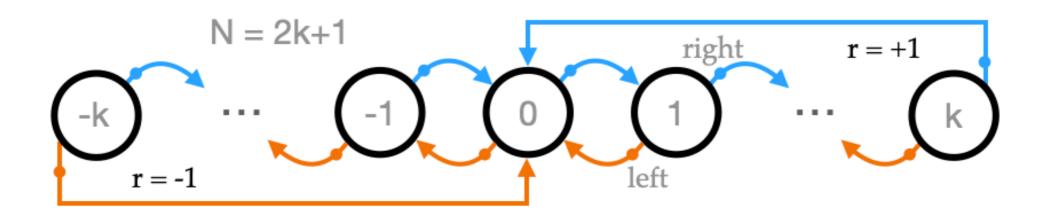
Consider an iterative algorithm of the form:  $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$ .

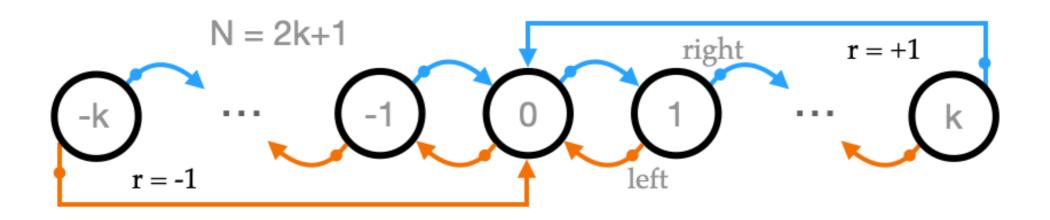
Suppose the following conditions are satisfied:

- The process {Y<sub>t</sub>} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function  $h(\mathbf{v}, y)$  is jointly continuous in  $(\mathbf{v}, y)$  and is Lipschitz in  $\mathbf{v}$  uniformly w.r.t.  $y \in \mathcal{Y}$ .
- 3. Define h̃(v) = E<sub>d</sub>[h(v, Y)]. The limit ĥ(v) = lim<sub>c→∞</sub> h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence {m<sub>t+1</sub>} is a martingale difference sequence w.r.t. the increasing σ-fields F<sub>t</sub> = σ(v<sub>k</sub>, Y<sub>k</sub>, m<sub>k</sub>, k ≤ t), t ≥ 0 (that is, E[||m<sub>t+1</sub>|| | F<sub>t</sub>] < ∞ and E[m<sub>t+1</sub> | F<sub>t</sub>] = 0 almost surely, ∀t ≥ 0), and E[||m<sub>t+1</sub>||<sup>2</sup> | F<sub>t</sub>] < K(1 + ||v<sub>t</sub>||<sup>2</sup>) almost surely, ∀t ≥ 0, for some constant K > 0.
- 5. The step sizes  $\{\alpha_t\}$  are positive with  $\sum_t \alpha_t = \infty$  and  $\sum_t \alpha_t^2 < \infty$ .

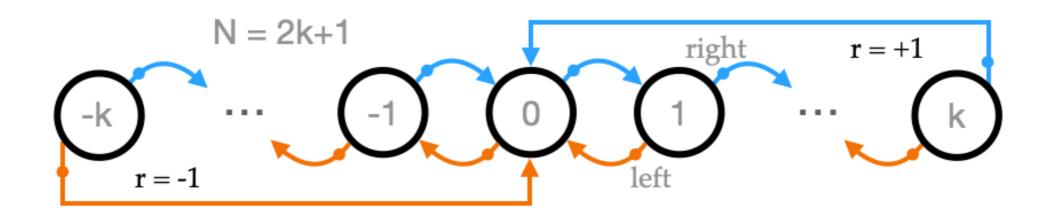
- (i) the algorithm is stable, that is,  $\sup_t \|\mathbf{v}_t\| < \infty$ , almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE  $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$ .



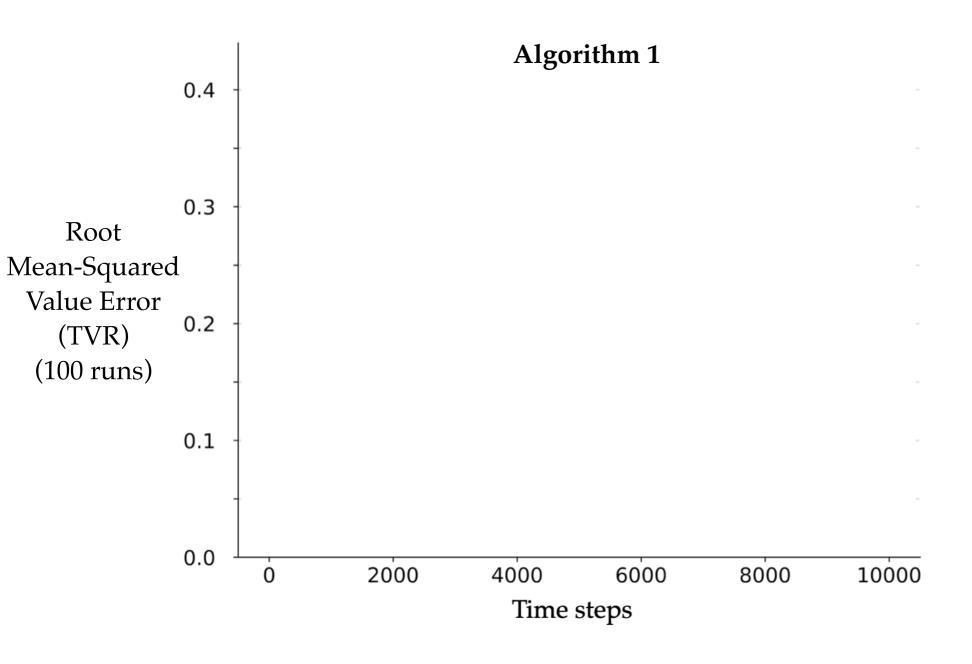


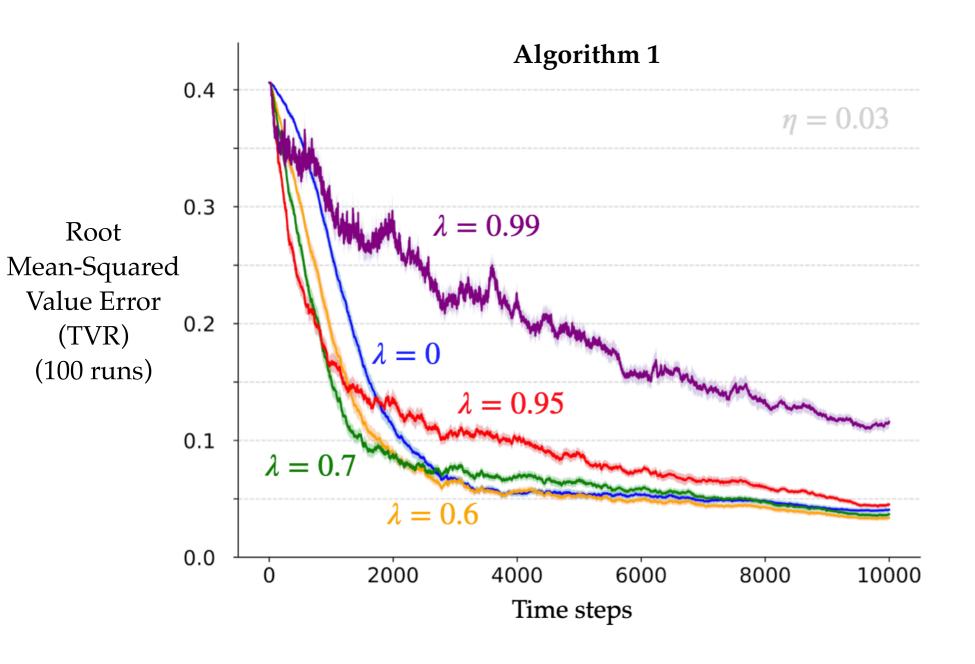


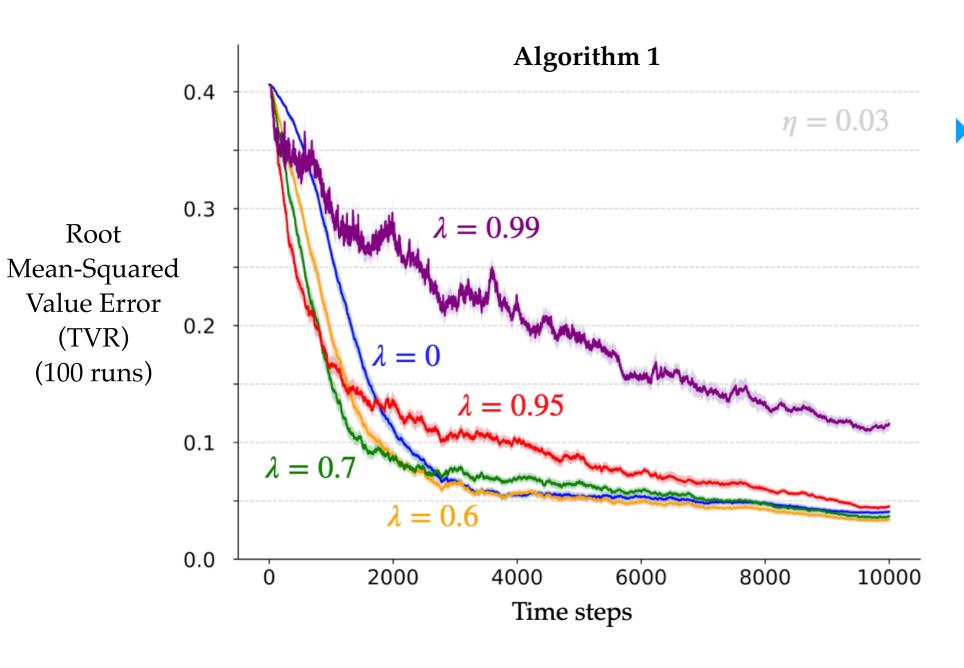
|               |       | left | right |
|---------------|-------|------|-------|
| Target policy | $\pi$ | 0.5  | 0.5   |



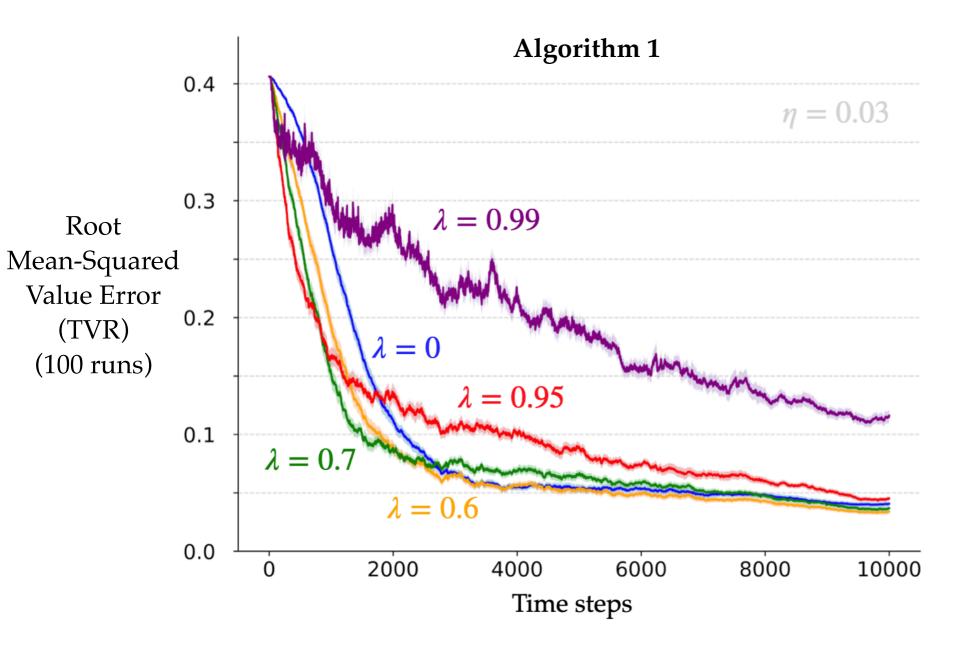
|                    |       | left                              | right                             |
|--------------------|-------|-----------------------------------|-----------------------------------|
| Target policy      | $\pi$ | 0.5                               | 0.5                               |
| Behaviour policies | b     | 0.5<br>0.55<br>0.6<br>0.65<br>0.7 | 0.5<br>0.45<br>0.4<br>0.35<br>0.3 |



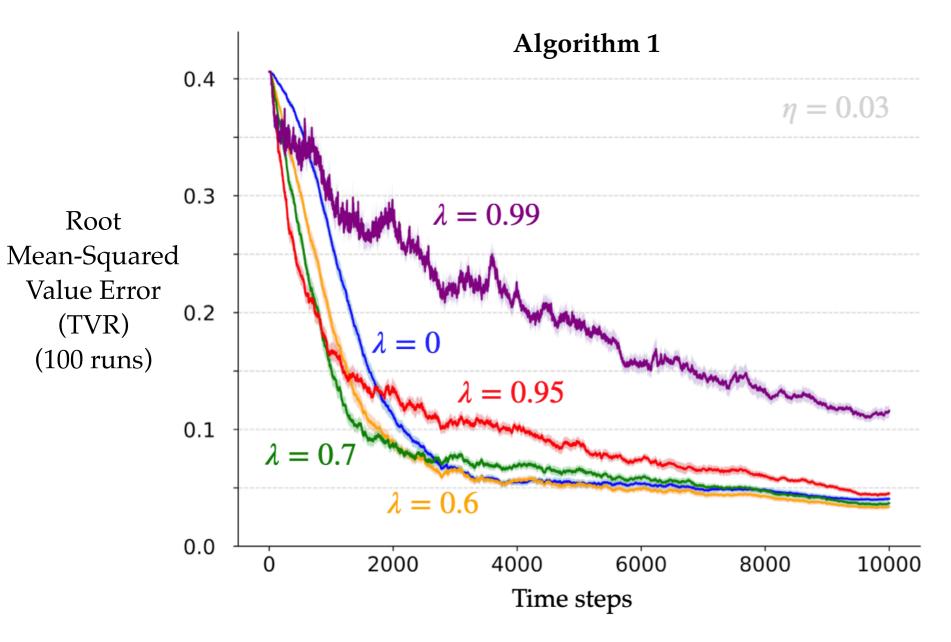




Asymptotic
 convergence for all
 these values of λ

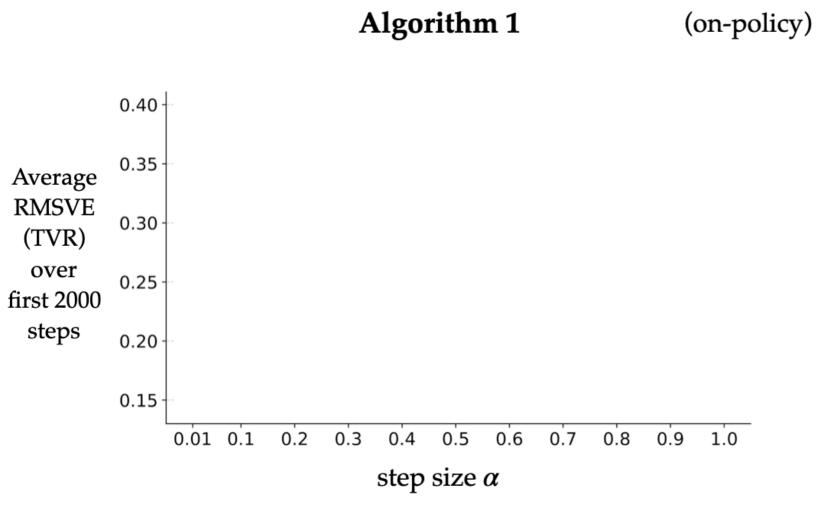


- Asymptotic
   convergence for all
   these values of λ
- Intermediate value of λ works best

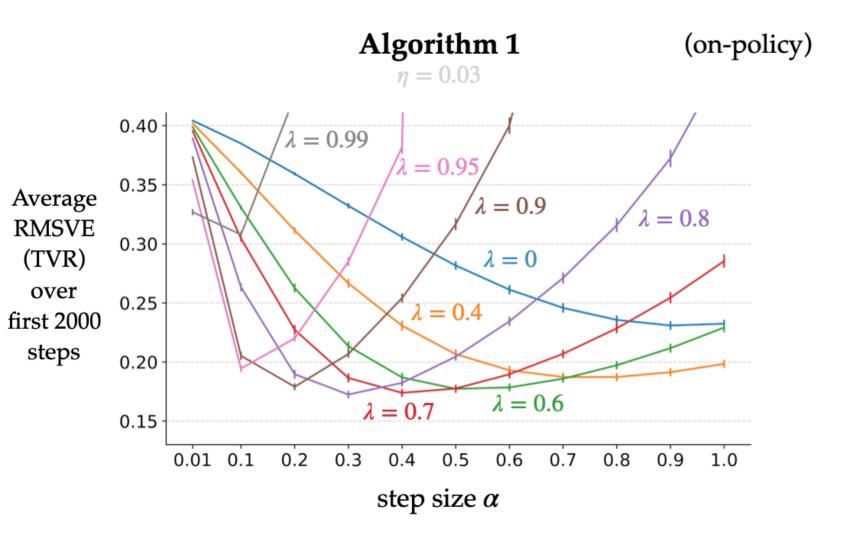


- Asymptotic
   convergence for all
   these values of λ
- Intermediate value of λ works best
- Similar trends for other values of  $\eta$

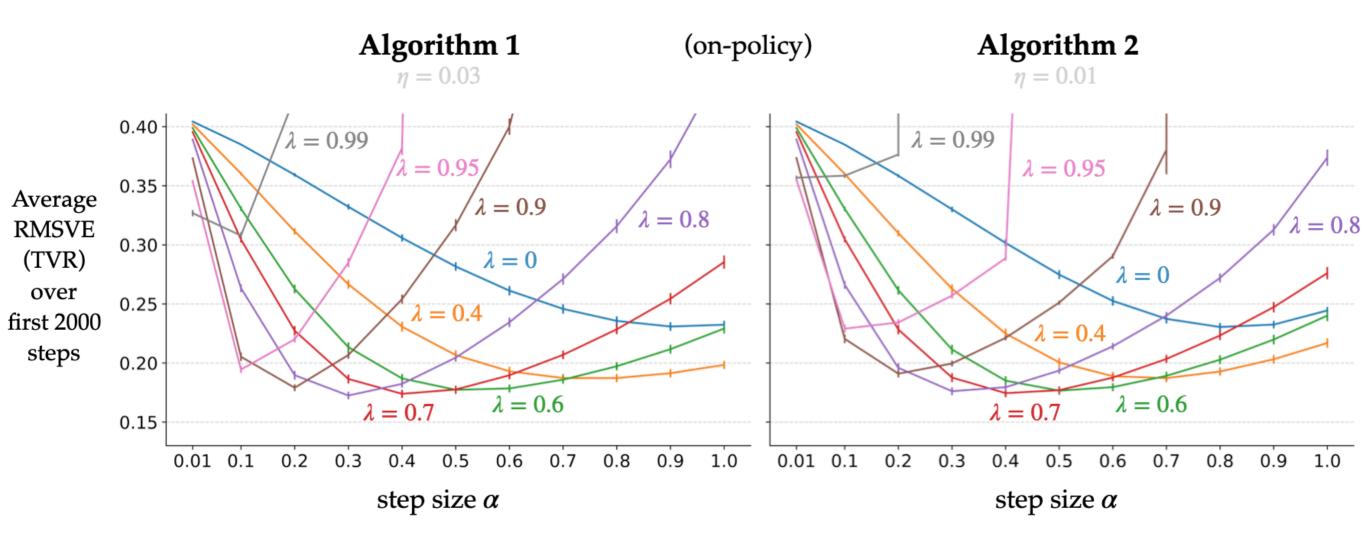
### **ON-POLICY SENSITIVITY PLOTS**



## **ON-POLICY SENSITIVITY PLOTS**

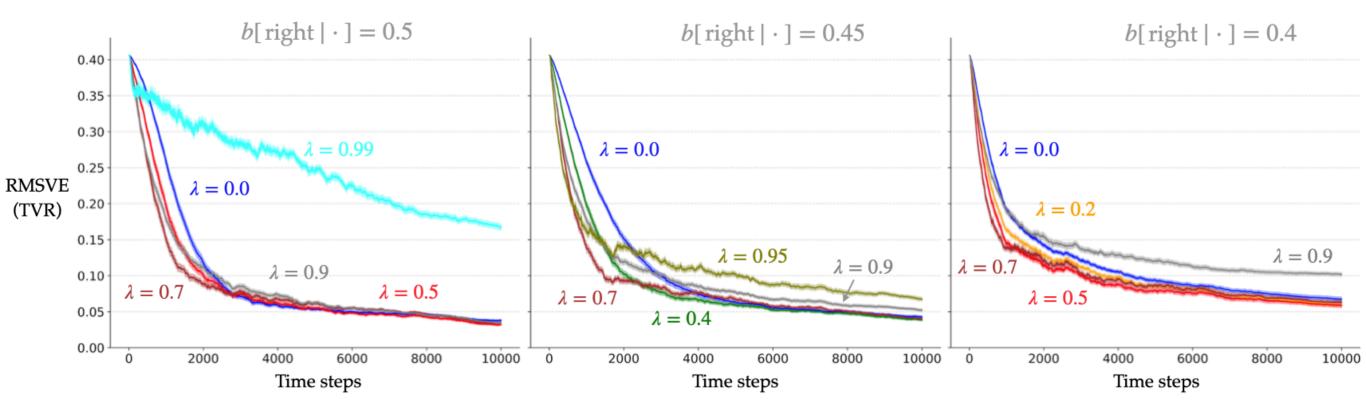


## **ON-POLICY SENSITIVITY PLOTS**

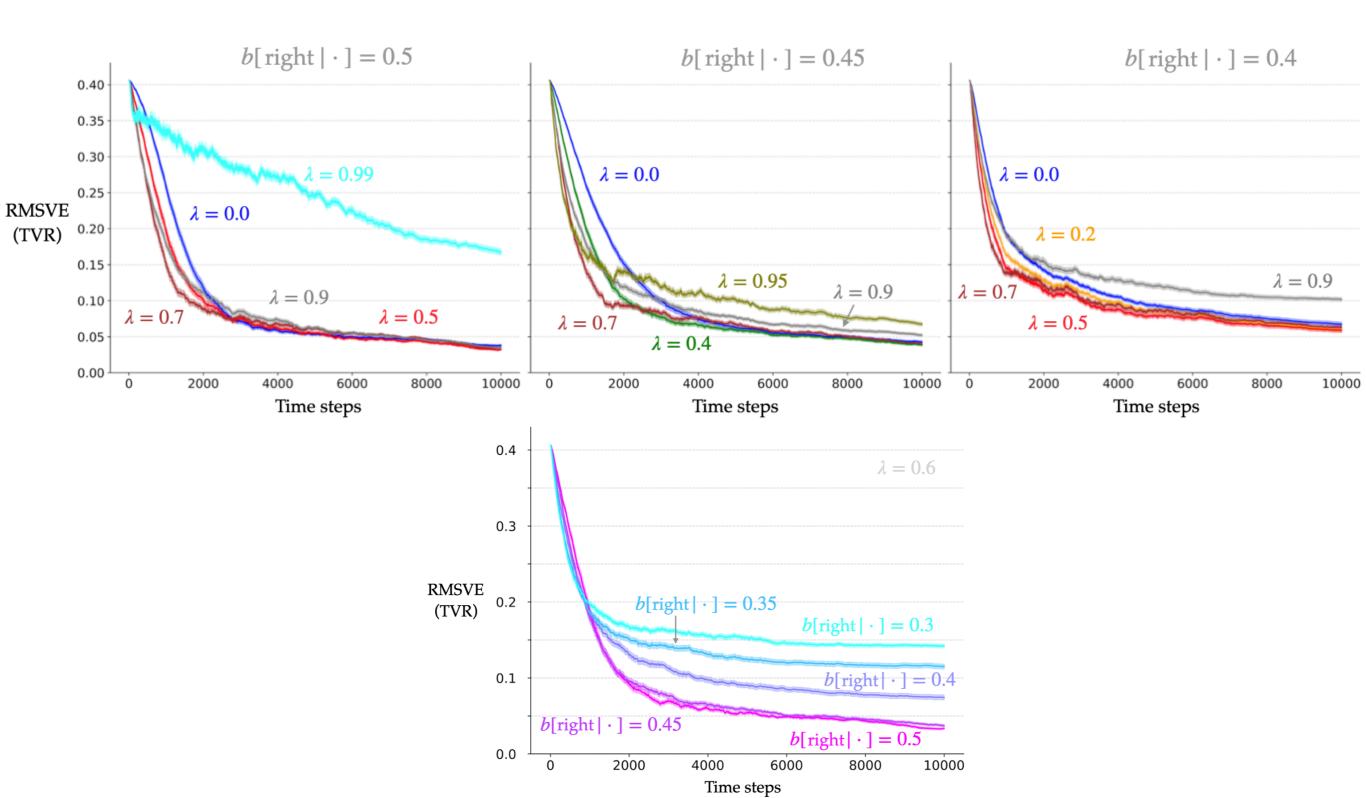


(Algorithm 2)

(Algorithm 2)



(Algorithm 2)



# THANK YOU

Questions?