AN EXPERIMENTALIST'S VENTURE INTO RL THEORY

Two Successes and a Failure

Al Seminar 16 Feb 2024

Abhishek Naik

with thanks to Janey, Yi, and Rich

WHERE IT ALL BEGAN

Learning and Planning in Average-Reward Markov Decision Processes

Yi Wan *1 Abhishek Naik *1 Richard S. Sutton 12

Abstract

We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on us-

with it. For learning and combined methods, both control and prediction problems can be further subdivided into *on-policy* versions, in which data is gathered using the target policy, and *off-policy* versions, in which data is gathered using a second policy, called the *behavior policy*. In general, both policies may be non-stationary. For example, in the control problem, the target policy should converge to a policy that maximizes the reward rate. Useful surveys of average-reward learning are given by Mahadevan (1996) and Dewanto et al. (2020).

WHERE IT ALL BEGAN

Learning and Planning in Average-Reward Markov Decision Processes

Yi Wan *1 Abhishek Naik *1 Richard S. Sutton 12

Abstract

We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on us-

with it. For learning and combined methods, both control and prediction problems can be further subdivided into *on-policy* versions, in which data is gathered using the target policy, and *off-policy* versions, in which data is gathered using a second policy, called the *behavior policy*. In general, both policies may be non-stationary. For example, in the control problem, the target policy should converge to a policy that maximizes the reward rate. Useful surveys of average-reward learning are given by Mahadevan (1996) and Dewanto et al. (2020).

One-step tabular average-reward methods

Trajectory

Learned values / policy

Trajectory

Multi-step average-reward methods

PROBLEM SETTING

THE AVERAGE-REWARD FORMULATION

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$
$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$
$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

The Prediction Problem

Estimate $r(\pi)$ and v_π using data generated by some policy b.

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

Multi-step version

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \, \alpha_t \, \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \, \alpha_t \, \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \qquad \eta > 0$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \, \alpha_t \, \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

Is it guaranteed to converge...?

INTUITIONS ABOUT CONVERGENCE THEORY

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t [R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t]$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \qquad V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

 $V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$
$$V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [R_{t+1} \mathbf{x}_t + \mathbf{x}_t (\gamma \mathbf{x}_{t+1} - \mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \qquad V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [R_{t+1} \mathbf{x}_t + \mathbf{x}_t (\gamma \mathbf{x}_{t+1} - \mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [\mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \mathbf{x}_t \left[R_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \right]$$

$$V_t(S_t) = \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$V_{t+1}(S_t) \doteq V_t(S_t) + \alpha_t \left[R_{t+1} + \gamma V_t(S_{t+1}) - V_t(S_t) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [\mathbf{R}_{t+1} \mathbf{x}_t + \mathbf{x}_t (\gamma \mathbf{x}_{t+1} - \mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t [\mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t]$$

$$\mathbf{b}_t \in \mathbb{R}^d$$

$$\mathbf{A}_t \in \mathbb{R}^{d \times d}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \mathbf{x}_{t} \left[R_{t+1} + \gamma \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t} \right]$$

$$V_{t}(S_{t}) = \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$V_{t+1}(S_{t}) \doteq V_{t}(S_{t}) + \alpha_{t} \left[R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t}) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[\mathbf{k}_{t+1} \mathbf{x}_{t} + \mathbf{x}_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t})^{\mathsf{T}} \mathbf{w}_{t} \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{b}_{t} \in \mathbb{R}^{d}$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{t} = \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{A}_{t} \in \mathbb{R}^{d \times d}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \mathbf{x}_{t} \left[R_{t+1} + \gamma \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t} \right]$$

$$V_{t}(S_{t}) = \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$V_{t+1}(S_{t}) \doteq V_{t}(S_{t}) + \alpha_{t} \left[R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t}) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[\mathbf{R}_{t+1} \mathbf{x}_{t} + \mathbf{x}_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t})^{\mathsf{T}} \mathbf{w}_{t} \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{b}_{t} \in \mathbb{R}^{d}$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{t} = \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{A}_{t} \in \mathbb{R}^{d \times d}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \mathbf{x}_{t} \left[R_{t+1} + \gamma \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t} \right]$$

$$V_{t}(S_{t}) = \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$V_{t+1}(S_{t}) \doteq V_{t}(S_{t}) + \alpha_{t} \left[R_{t+1} + \gamma V_{t}(S_{t+1}) - V_{t}(S_{t}) \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[\mathbf{R}_{t+1} \mathbf{x}_{t} + \mathbf{x}_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t})^{\mathsf{T}} \mathbf{w}_{t} \right]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{b}_{t} \in \mathbb{R}^{d}$$

$$\mathbf{w}_{t+1} - \mathbf{w}_{t} = \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{w}_{t} \right]$$

$$\mathbf{A}_{t} \in \mathbb{R}^{d \times d}$$

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

RECAP: ORDINARY DIFFERENTIAL EQUATIONS

$$F = ma$$

$$F = ma$$

$$mg - \mu v_t = ma_t$$

$$F = ma$$

$$mg - \mu v_t = ma_t$$

$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$F = ma$$

$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m} v_t$$

 $mg - \mu v_t = ma_t$

$$F = ma$$

$$mg - \mu v_t = ma_t$$

$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m} v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$F = ma$$

$$mg - \mu v_t = ma_t$$

$$mg - \mu v_t = m \frac{dv_t}{dt}$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m} v_t$$

$$\frac{dv_t}{dt} = g - \frac{\mu}{m}v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t \qquad \frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 + 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 + 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 - 0.2 v_t$$

$$\frac{dv_t}{dt} = 10 + 0.2 v_t$$

$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$

All the eigenvalues of $\bf A$ should have negative real parts.

All the eigenvalues of $\bf A$ should have negative real parts.

That is, A is a Hurwitz matrix.

All the eigenvalues of $\bf A$ should have negative real parts.

That is, A is a Hurwitz matrix.

Corollary of Khalil's (1996) Theorem 3.5

The ODE
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable

equilibrium point \mathbf{w}^* such that $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$

iff A is Hurwitz.

All the eigenvalues of $\bf A$ should have negative real parts.

That is, A is a Hurwitz matrix.

Corollary of Khalil's (1996) Theorem 3.5

The ODE
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable equilibrium point \mathbf{w}^* such that $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$ iff \mathbf{A} is Hurwitz.

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

All the eigenvalues of $\bf A$ should have negative real parts.

That is, A is a Hurwitz matrix.

Corollary of Khalil's (1996) Theorem 3.5

The ODE
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable equilibrium point \mathbf{w}^* such that $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$ iff \mathbf{A} is Hurwitz.

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t$$

All the eigenvalues of $\bf A$ should have negative real parts.

That is, A is a Hurwitz matrix.

Corollary of Khalil's (1996) Theorem 3.5

The ODE
$$\frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A}\mathbf{w}_t$$
 has a globally stable equilibrium point \mathbf{w}^* such that $\mathbf{b} + \mathbf{A}\mathbf{w}^* = 0$ iff \mathbf{A} is Hurwitz.

$$\frac{d\mathbf{w}_t}{dt} \propto \mathbf{b}_t + \mathbf{A}_t \mathbf{w}_t \qquad \frac{d\mathbf{w}_t}{dt} = \mathbf{b} + \mathbf{A} \mathbf{w}_t$$

BEHAVIOR OF SAMPLE-BASED ALGORITHMS

(WHAT I'VE LEARNED ABOUT)

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

2. Show the ODE has a globally stable equilibrium point.

APPLYING THESE TECHNIQUES TO PROVE THE CONVERGENCE OF OUR ALGORITHMS

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned} \qquad \mathbf{u}_{t+1} &\doteq \mathbf{u}_t + \alpha_t \big[\mathbf{b}_t + \mathbf{A}_t \mathbf{u}_t \big] \end{aligned}$$
 where
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\top \mathbf{x}_{t+1} + \mathbf{w}_t^\top \mathbf{x}_t$$

$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\top \mathbf{x}_{t+1} + \mathbf{w}_t^\top \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\top \mathbf{x}_{t+1} + \mathbf{w}_t^\top \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\mathbf{A} = \mathbb{E}[\mathbf{A}_t] \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\top} \\ \frac{-1}{1-\lambda} \mathbf{X}^{\top} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{X}^{\top} \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \mathbf{X} \end{bmatrix}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\mathbf{A} = \mathbb{E}[\mathbf{A}_t] \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \mathbf{X} \end{bmatrix} \text{ is Hurwitz.}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\delta_t &\doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\mathbf{u}_{t+1} \doteq \mathbf{u}_{t} + \alpha_{t} \left[\mathbf{b}_{t} + \mathbf{A}_{t} \mathbf{u}_{t} \right]$$

$$\mathbf{b}_{t} \doteq \begin{bmatrix} \eta R_{t+1} \\ \mathbf{z}_{t} R_{t+1} \end{bmatrix}_{(d+1) \times 1}$$

$$\mathbf{A}_{t} \doteq \begin{bmatrix} -\eta & \eta (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \\ -\mathbf{z}_{t} & \mathbf{z}_{t} (\mathbf{x}_{t+1} - \mathbf{x}_{t})^{\top} \end{bmatrix}_{(d+1) \times (d+1)}$$

$$\mathbf{A} = \mathbb{E}[\mathbf{A}_t] \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{X}^{\mathsf{T}} \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \mathbf{X} \end{bmatrix} \text{ is Hurwitz.}$$

Tsitsiklis & Van Roy's (1999) Lemma 7)

Theorem 1.2. (Based on Tsitsiklis and Van Roy's (1999) Theorem 2) Consider the iterative algorithm of the form $\mathbf{u}_{t+1} \doteq \mathbf{u}_t + \alpha_t(\mathbf{b}(Y_t) + \mathbf{A}(Y_t)\mathbf{u}_t)$. Suppose the following conditions are satisfied:

- 1. The Markov chain $\{Y_t\}$ evolving in a state space \mathcal{Y} has a unique steady-state distribution. Let $\mathbb{E}_{\mathbf{d}}[\cdot]$ denote the expectation according to this distribution.
- 2. Let $\mathbf{A} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{A}(Y_t)]$. There exists a diagonal matrix \mathbf{L} with positive diagonal entries such that $\mathbf{L}\mathbf{A}$ is negative definite.
- 3. There exists a constant C such that $\|\mathbf{A}(Y)\| \leq C$ and $\|\mathbf{b}(Y)\| \leq C$ for any $Y \in \mathcal{Y}$.
- 4. There exist scalars C and $\rho \in (0,1)$ such that $\forall t \geq 0$ and $Y_0 \in \mathcal{Y}$:

$$\|\mathbb{E}[\mathbf{A}(Y_t) \mid Y_0] - \mathbf{A}]\| \le C\rho^t,$$

$$\|\mathbb{E}[\mathbf{b}(Y_t) \mid Y_0] - \mathbf{b}]\| \le C\rho^t, \quad where, \ \mathbf{b} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{b}(Y_t)].$$

5. The step sizes α_t are positive, deterministic, and satisfy $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$.

Then \mathbf{u}_t converges to \mathbf{u}^* with probability one, where \mathbf{u}^* is the unique vector satisfying $\mathbf{A}\mathbf{u}^* + \mathbf{b} = 0$.

Theorem 1.2. (Based on Tsitsiklis and Van Roy's (1999) Theorem 2) Consider the iterative algorithm of the form $\mathbf{u}_{t+1} \doteq \mathbf{u}_t + \alpha_t(\mathbf{b}(Y_t) + \mathbf{A}(Y_t)\mathbf{u}_t)$. Suppose the following conditions are satisfied:

- 1. The Markov chain $\{Y_t\}$ evolving in a state space \mathcal{Y} has a unique steady-state distribution. Let $\mathbb{E}_{\mathbf{d}}[\cdot]$ denote the expectation according to this distribution.
- 2. Let $\mathbf{A} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{A}(Y_t)]$. There exists a diagonal matrix \mathbf{L} with positive diagonal entries such that $\mathbf{L}\mathbf{A}$ is negative definite.
- 3. There exists a constant C such that $\|\mathbf{A}(Y)\| \leq C$ and $\|\mathbf{b}(Y)\| \leq C$ for any $Y \in \mathcal{Y}$.
- 4. There exist scalars C and $\rho \in (0,1)$ such that $\forall t \geq 0$ and $Y_0 \in \mathcal{Y}$:

$$\|\mathbb{E}[\mathbf{A}(Y_t) \mid Y_0] - \mathbf{A}]\| \le C\rho^t,$$

$$\|\mathbb{E}[\mathbf{b}(Y_t) \mid Y_0] - \mathbf{b}]\| \le C\rho^t, \quad where, \ \mathbf{b} \doteq \mathbb{E}_{\mathbf{d}}[\mathbf{b}(Y_t)].$$

5. The step sizes α_t are positive, deterministic, and satisfy $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$.

Then \mathbf{u}_t converges to \mathbf{u}^* with probability one, where \mathbf{u}^* is the unique vector satisfying $\mathbf{A}\mathbf{u}^* + \mathbf{b} = 0$.

Theorem 1.1. Under Assumptions 1.1, 1.2, 1.3, on-policy linear Differential $TD(\lambda)$ (Algorithm 1) converges for all $\lambda \in [0,1)$ with probability one:

- 1. \bar{R} converges to the unique reward rate of the target policy $r(\pi)$.
- 2. w converges to the unique solution, \mathbf{w}^* , of $\Pi T^{\lambda}(\mathbf{X}\mathbf{w}) = \mathbf{X}\mathbf{w}$.

The following error bound holds w.r.t. the centered differential value function \mathbf{v}_{π} :

$$\inf_{c \in \mathbb{R}} \|\mathbf{X}\mathbf{w}^* - (\mathbf{v}_{\pi} + c\,\mathbf{1})\|_{\mathbf{d}_{\pi}} \le \frac{1}{\sqrt{(1 - \tau_{\lambda}^2)}} \inf_{c \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - (\mathbf{v}_{\pi} + c\,\mathbf{1})\|_{\mathbf{d}_{\pi}},$$

where τ_{λ} is a function of λ such that $\tau_{\lambda} \in [0,1)$ and $\lim_{\lambda \to 1} \tau_{\lambda} = 0$;

One-step off-policy Differential TD

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \rho_t \, \delta_t \, \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\intercal} \mathbf{x}_{t+1} + \mathbf{w}_t^{\intercal} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \end{aligned}$$
 where
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \end{aligned}$$
 where
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \end{aligned}$$
 where
$$\mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Multi-step version?

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\intercal} \mathbf{x}_{t+1} + \mathbf{w}_t^{\intercal} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\begin{aligned} \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \end{aligned}$$

Algorithm 10ff

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\top} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

(1999) Lemma 7)

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$egin{aligned} \mathbf{0}^{ op} \ \mathbf{D}_{\pi} & (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{aligned}$$

(1999) Lemma 7)

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$

$$\eta \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$

$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$\mathbf{0}^{ op}$$
 $\mathbf{D}_{\pi}(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$

(1999) Lemma 7)

$$\mathbf{A}^{1o\!f\!f} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\top}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1-\lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix} \text{ is } not \text{ Hurwitz.}$$
(via a simulation analysis)

$$\eta \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$
$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$\mathbf{0}^{ op}$$
 $\mathbf{D}_{\pi}(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\top}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix} \text{ is } not \text{ Hurwitz.}$$
(via a simulation analysis)

$$\eta \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$
$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I})$$

So Algorithm 1*off* can diverge...:(

One-step off-policy Differential TD

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\begin{aligned} \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$
 where

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

Algorithm 10ff

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$
 where

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

Algorithm 10ff

EXTENSION TO THE OFF-POLICY SETTING

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

Algorithm 2

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \\ \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$
 where

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

Algorithm 10ff

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t$$

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1} \mathbf{g}^{\mathsf{T}})$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t \qquad \eta > 0$$

g is a non-negative vector with at least one positive element

$$\mathbf{A} = \mathbf{D}_b (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1} \mathbf{g}^{\mathsf{T}})$$

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t \qquad \eta > 0$$

g is a non-negative vector with at least one positive element

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1}\mathbf{g}^{\mathsf{T}}) \text{ is Hurwitz!}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

$$\bar{R}_t = f(\hat{\mathbf{v}}_t)$$

$$f(\hat{\mathbf{v}}_t) = \eta \, \mathbf{g}^{\mathsf{T}} \mathbf{v}_t \qquad \eta > 0$$

g is a non-negative vector with at least one positive element

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1}\mathbf{g}^{\mathsf{T}}) \text{ is Hurwitz!}$$

For any $\lambda > 0$ there exist $\eta > 0$ such that ${\bf A}$ is Hurwitz.

(using the Perron-Frobenius theorem for irreducible non-negative matrices)

Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form: $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$.

Suppose the following conditions are satisfied:

- The process {Y_t} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function $h(\mathbf{v}, y)$ is jointly continuous in (\mathbf{v}, y) and is Lipschitz in \mathbf{v} uniformly w.r.t. $y \in \mathcal{Y}$.
- 3. Define h̃(v) = E_d[h(v, Y)]. The limit ĥ(v) = lim_{c→∞} h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence {m_{t+1}} is a martingale difference sequence w.r.t. the increasing σ-fields F_t = σ(v_k, Y_k, m_k, k ≤ t), t ≥ 0 (that is, E[||m_{t+1}|| | F_t] < ∞ and E[m_{t+1} | F_t] = 0 almost surely, ∀t ≥ 0), and E[||m_{t+1}||² | F_t] < K(1 + ||v_t||²) almost surely, ∀t ≥ 0, for some constant K > 0.
- 5. The step sizes $\{\alpha_t\}$ are positive with $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$.

- (i) the algorithm is stable, that is, $\sup_t \|\mathbf{v}_t\| < \infty$, almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$.

Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form: $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$.

Suppose the following conditions are satisfied:

- The process {Y_t} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function $h(\mathbf{v}, y)$ is jointly continuous in (\mathbf{v}, y) and is Lipschitz in \mathbf{v} uniformly w.r.t. $y \in \mathcal{Y}$.
- 3. Define h̃(v) = E_d[h(v, Y)]. The limit ĥ(v) = lim_{c→∞} h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence {m_{t+1}} is a martingale difference sequence w.r.t. the increasing σ-fields F_t = σ(v_k, Y_k, m_k, k ≤ t), t ≥ 0 (that is, E[||m_{t+1}|| | F_t] < ∞ and E[m_{t+1} | F_t] = 0 almost surely, ∀t ≥ 0), and E[||m_{t+1}||² | F_t] < K(1 + ||v_t||²) almost surely, ∀t ≥ 0, for some constant K > 0.
- 5. The step sizes $\{\alpha_t\}$ are positive with $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$.

- (i) the algorithm is stable, that is, $\sup_t \|\mathbf{v}_t\| < \infty$, almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$.

Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form: $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$.

Suppose the following conditions are satisfied:

- The process {Y_t} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function $h(\mathbf{v}, y)$ is jointly continuous in (\mathbf{v}, y) and is Lipschitz in \mathbf{v} uniformly w.r.t. $y \in \mathcal{Y}$.
- 3. Define h̃(v) = E_d[h(v, Y)]. The limit ĥ(v) = lim_{c→∞} h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence $\{\mathbf{m}_{t+1}\}$ is a martingale difference sequence w.r.t. the increasing σ -fields $\mathcal{F}_t \doteq \sigma(\mathbf{v}_k, Y_k, \mathbf{m}_k, k \leq t), t \geq 0$ (that is, $\mathbb{E}[\|\mathbf{m}_{t+1}\| \mid \mathcal{F}_t] < \infty$ and $\mathbb{E}[\mathbf{m}_{t+1} \mid \mathcal{F}_t] = 0$ almost surely, $\forall t \geq 0$), and $\mathbb{E}[\|\mathbf{m}_{t+1}\|^2 \mid \mathcal{F}_t] < K(1 + \|\mathbf{v}_t\|^2)$ almost surely, $\forall t \geq 0$, for some constant K > 0.
- 5. The step sizes $\{\alpha_t\}$ are positive with $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$.

- (i) the algorithm is stable, that is, $\sup_t \|\mathbf{v}_t\| < \infty$, almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$.

Theorem 1.4 (Based on Borkar's (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form: $\mathbf{v}_{n+1} \doteq \mathbf{v}_n + \alpha_n [h(\mathbf{v}_t, Y_t) + \mathbf{m}_{t+1}]$.

Suppose the following conditions are satisfied:

- The process {Y_t} is a weak Feller Markov chain in a compact state space Y and has a unique invariant probability measure d.
- 2. The function $h(\mathbf{v}, y)$ is jointly continuous in (\mathbf{v}, y) and is Lipschitz in \mathbf{v} uniformly w.r.t. $y \in \mathcal{Y}$.
- 3. Define h̃(v) = E_d[h(v, Y)]. The limit ĥ(v) = lim_{c→∞} h̃(cv)/c exists uniformly on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin as the unique globally asymptotically stable solution.
- 4. The sequence {m_{t+1}} is a martingale difference sequence w.r.t. the increasing σ-fields F_t = σ(v_k, Y_k, m_k, k ≤ t), t ≥ 0 (that is, E[||m_{t+1}|| | F_t] < ∞ and E[m_{t+1} | F_t] = 0 almost surely, ∀t ≥ 0), and E[||m_{t+1}||² | F_t] < K(1 + ||v_t||²) almost surely, ∀t ≥ 0, for some constant K > 0.
- 5. The step sizes $\{\alpha_t\}$ are positive with $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$.

- (i) the algorithm is stable, that is, $\sup_t \|\mathbf{v}_t\| < \infty$, almost surely,
- (ii) the algorithm converges almost surely to a compact internally chain transitive invariant set of the ODE $\dot{\mathbf{u}} = \tilde{h}(\mathbf{u})$.

		left	right
Target policy	π	0.5	0.5

		left	right
Target policy	π	0.5	0.5
Behaviour policies	b	0.5 0.55 0.6 0.65 0.7	0.5 0.45 0.4 0.35 0.3

Asymptotic
 convergence for all
 these values of λ

- Asymptotic
 convergence for all
 these values of λ
- Intermediate value of λ works best

- Asymptotic
 convergence for all
 these values of λ
- Intermediate value of λ works best
- Similar trends for other values of η

ON-POLICY SENSITIVITY PLOTS

ON-POLICY SENSITIVITY PLOTS

ON-POLICY SENSITIVITY PLOTS

(Algorithm 2)

(Algorithm 2)

(Algorithm 2)

THANK YOU

Questions?