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» One-step tabular average-reward methods
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» Multi-step average-reward methods
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PROBLEM SETTING

THE AVERAGE-REWARD FORMULATION

S0 Ag By 51 ApRy... 5 Ay Ry Sy Ay Ry -

|ﬁ| () = % [gRt]

observation

/rew.ml\

v.(s) =E R | —r(m)+ R r—r(m)+...|5 = 5]
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The Prediction Problem

» Estimate r(xr) and v_ using data generated by some policy b.
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ON-POLICY PREDICTION

v (s) & w ' x(s)

One-step Differential TD Multi-step version
Wi = W, +a,0,X, Wil =W, +0,0,Z,
Rt+1 iRt+nat5t 77>O Rt+1 iRt‘F’?%@
where &, =R, — R, +W/Xx, + W/, where 6, =R, — R +W/X,, | +W/x,
Z, =z, +X,

Algorithm 1

s it guaranteed to converge...?
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PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS

Wo W, ... W, ...

1. Show that the sequence of iterates is bounded and
asymptotically converges to the solutions of an ODE.

2. Show the ODE has a globally stable equilibrium point.
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distribution. Let Eq[-| denote the expectation according to this distribution.
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entries such that LA is negative definite.
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PUTTING EVERYTHING TOGETHER

ANALYSIS OF ALGORITHM 1

Theorem 1.1. Under Assumptions 1.1, 1.2, 1.3, on-policy linear Differential TD()\)

(Algorithm 1) converges for all X € [0,1) with probability one:

1. R converges to the unique reward rate of the target policy r(m).

2. w converges to the unique solution, w*, of [IT*(Xw) = Xw.

The following error bound holds w.r.t. the centered differential value function v,:

1
inf [|Xw* — (v +c1)], < inf || Xw — (vr+c1)y_,
= " "

\/(1 — 7')‘2) ceR,weRd

where Ty 1s a function of A such that T\ € [0,1) and limy_; 7\ = 0;
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Al=|
|11 p1
-7
Aloff = _1_;7
=Dl

OT
D, (P — 1)
n d[-yr(Pyr _ H)_
D,(P.—1)

IS Hurwitz.

(Tsitsiklis & Van Roy’s
(1999) Lemma 7)

IS not

urwitz.

(via a simulation analysis)

So Algorithm 1off can diverge... :(
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One-step off-policy Differential TD
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Wi =W, +a,0,Z,

_ R R =f)
R, =R, +nadz
where Z, = p, (/1Zt_1 + Xt)
N } AN T
z = p Uzl + 1) JV) =ngv,

n

A=D.(P*—1]
AP 1 -2

1g") is Hurwitz!

For any A > 0 there exist # > 0 such that A is Hurwitz.

(using the Perron—Frobenius theorem for irreducible non-negative matrices)



ANALYSIS OF ALGORITHM 2

Theorem 1.4 (Based on Borkar’s (2009: Chapter 6) Theorem 9 and Corollary 8).
Consider an iterative algorithm of the form: v,., = v, + a, [h(vt,Yt) + m,H].

Suppose the following conditions are satisfied:

1. The process {Y;} is a weak Feller Markov chain in a compact state space Y and

has a unique invariant probability measure d.
2. The function h(v,y) is jointly continuous in (v,y) and 1s Lipschitz in v uni-

formly w.r.t.y €Y.

3. Define h(v) = E, [h(v,Y)]. The limit h(v) = lim, o h(cV)/c ezists uniformly
on compact subsets of v. The ODE 1 = h(u) is well posed and has the origin

as the unique globally asymptotically stable solution.

4. The sequence {my,,} is a martingale difference sequence w.r.t. the increasing
o-fields Fy = o(vi, Y, mp, k < t),t > 0 (that is, E[|m.| | Fi] < oo and
Elmy, | Fi] = 0 almost surely, ¥t > 0), and E[llmt+1”2 | il < K(1+ ||Vt||2)

almost surely, ¥t > 0, for some constant K > 0.

5. The step sizes {a,} are positive with , o, = 00 and ), of < 00.
Then,

(i) the algorithm is stable, that is, sup, ||v,| < oo, almost surely,

(i) the algorithm converges almost surely to a compact internally chain transitive

invariant set of the ODE 1 = h(u).
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