REINFORCEMENT LEARNING
IN CONTINUING PROBLEMS

USING AVERAGE REWARD

eeeeee
22222222222




Additionally, problems of
function approximation

* Remember, the policy improvement theorem does not hold
in the function-approximation setting.

* In the tabular setting, we could compare two policies by a
state-wise comparison of the value function.

* In the function-approxamation setting, this cannot be done.
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lo develop simple and practical learning algorithms
from first principles for long-lived agents
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Discounted Reinforcement Learning is Not an Optimization Problem.

1. One-step average-reward methods

Learning and Planning in Average Reward Markov Decision Processes.

Multi-step average-reward methods

Multi-step Average-Reward Prediction via Differential TD(A).
Multi-Step Off-Policy Average-Reward Prediction with Eligibility Traces.

An Idea to Improve discounted-reward methods

Reward Centering.

Towards Reinforcement Learning in the Continuing Setting. CSuite.

2
3
4. A suite of continuing problems
5

Average-reward algorithms for the options framework

Average-Reward Learning and Planning with Options.

» Planning with expectation models for control

Planning with Expectation Models for Control.

» (Generalizing in the action space for large recommender systems

Investigating Action-Space Generalization in Reinforcement Learning for Recommendation Systems
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Naik et al. (2019). Discounted Reinforcement Learning is Not an Optimization Problem.
Optimization Foundations of RL workshop at NeurlPS.
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Differential Q-learning RVI Q-learning

Q1055 A4) = O[S, A) + o [Rt+1 — R, + Db QS415a) — OLS,, At)] Q1055 A) = O[S, A) + q [Rt+1 - Q)+ LTS Qi(Spy1,a’) — OUS,, At)]
R = R, + 15,4, 2
L)
b

—xamples of f:
» value of a single state—action pair

» average of values of all state—action pairs
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TAKEAWAYS

ntial Q-learning is a convergent algorithm for

Cy average-reward control.

» does not require a reference function

» IS relatively easy to use

» Differential TD-learning Is a convergent algorithm for

-policy average-reward prediction.

of

» estimates both the average reward and the values accurately

» IS relatively easy to use

More experiments, planning variants of these learning algorithms, convergence proofs, etc.:

» Convergence results
imited to the tabular case

» No temporal abstraction

» All algorithms are one-step
methods

Wan*, Naik*, & Sutton. (2021). Learning and Planning in Average-Reward Markov Decision Processes. ICML.
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Multi-step version
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v (s) & W X(s)

One-step Differential TD Multi-step version
WH_liW +0{t5X Wt+lth+0(t5tZt
Rt+1 — R T 770%5 Ry = R, +noy o, R =R +no (R —R)
where 8, =R.,—R +WwW'x._ ,+Ww'x 5.=R . .—R T T
r = D1 T T W X T W X where O, = K, 1 — K, + W, X 1 + W, X
Z, = AZ,_|+X,
Algorithm 1 Average-Cost TD(A)
Also guaranteed to converge, Guaranteed to converge

under the same conditions (Tsitsiklis & Van Roy, 1999)
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(WHAT I'VE LEARNED ABOUT)

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS
USING THE ODE APPROACH

WoW; ... W, ...

1. Show that the sequence of iterates is bounded and asymptotically
converges to the solutions of an ODE.

2. Show the ODE has a globally stable equilibrium point.

Proving the convergence of Algorithm 1 was fairly straightforward.
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One-step off-policy Differential TD
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Rt+1 = Rt + na, o,
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where Z; = AZ,_; + X,

Wi =W, +a,01,

. » T T
where 0, = R, ; — R, + W, X, | + W, X, R. =R +nap,d
-+ t t Pt 91
P N ﬂ(Az | S;) where Z, = p, (/lzt—l + Xt)
" b(AS)

Algorithm 1off



ANALYSIS OF (TABULAR) ALGORITHM T10FF'S “A” MATRIX



ANALYSIS OF (TABULAR) ALGORITHM T10FF'S “A” MATRIX




ANALYSIS OF (TABULAR) ALGORITHM T10FF'S “A” MATRIX

-
1 =1 0 | |
A= ) IS Hurwitz.
1 - Dnl Dn(Pn - ”) (Tsitsiklis & Van Roy’s
(1999) Lemma 7)




ANALYSIS OF (TABULAR) ALGORITHM T10FF'S “A” MATRIX

-
1 —1 0 | |
A= ) IS Hurwitz.
1 - Dnl Dn(Pn - ”) (Tsitsiklis & Van Roy’s
(1999) Lemma 7)

— d'P_ -1
AIOffi |: n n b( 7T ):|

-1
—D,1 D,(P: —1)



ANALYSIS OF (TABULAR) ALGORITHM T10FF'S “A” MATRIX

-
1 —1 0 | |
A= | ) IS Hurwitz.
1 - Dnl Dn(Pn - ”) (Tsitsiklis & Van Roy’s
(1999) Lemma 7)

IS not Hurwitz.

via a simulation analysis)

dTP |]
Loff [ H H b( 7 ):|
(

-1
—D,1 D,(P: —1)



ANALYSIS OF (TABULAR) ALGORITHM T10FF'S “A” MATRIX

1 —1 0 . .
A= _, ) IS Hurwitz.
1 - Dnl Dn(Pn - ”) (Tsitsiklis & Van Roy’s
(1999) Lemma 7)
-
—1 nd, P, -0 ]
Al = ’ . is not Hurwitz.
1 — 1 Dbl Db(P;z T I]) (via a simulation analysis)

So Algorithm 10off can diverge...
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THANK YOU

Questions?



