REINFORCEMENT LEARNING IN CONTINUING PROBLEMS USING AVERAGE REWARD

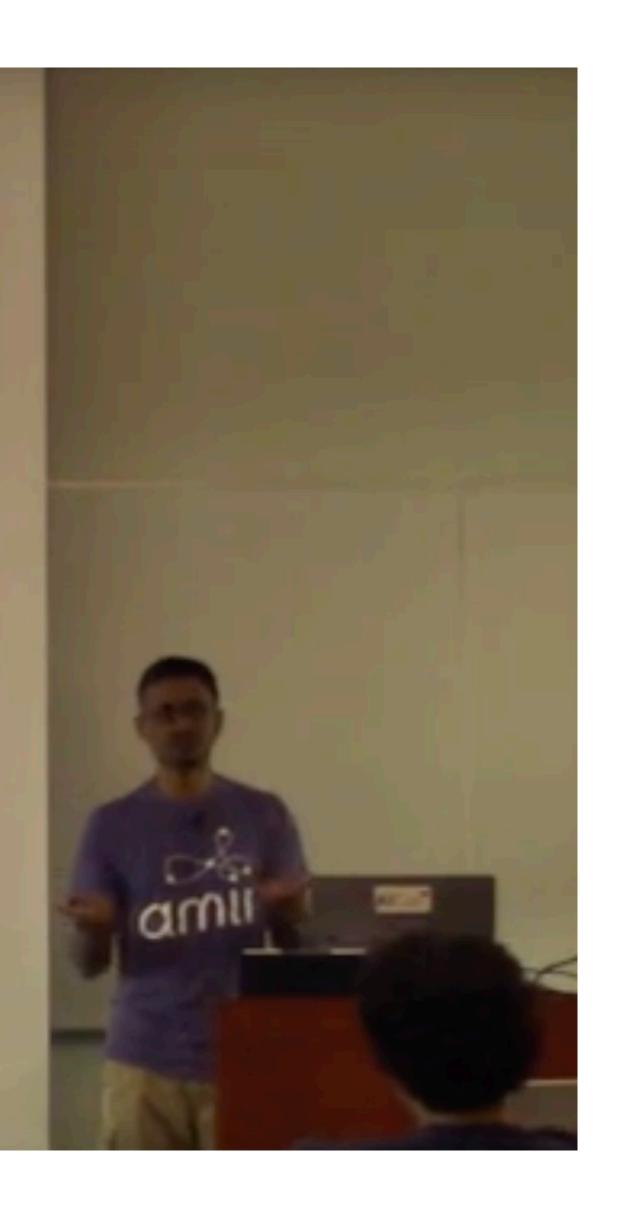
Defense Talk 28 March 2024

Abhishek Naik

with thanks to Rich, Yi, Janey, and many others

Additionally, problems of function approximation

- Remember, the policy improvement theorem does not hold in the function-approximation setting.
- In the tabular setting, we could compare two policies by a state-wise comparison of the value function.
- In the function-approximation setting, this cannot be done.



MY GOAL

MY GOAL

To develop simple and practical learning algorithms from first principles for long-lived agents

1. One-step average-reward methods

- 1. One-step average-reward methods
- 2. Multi-step average-reward methods

- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods

- O. The discounted formulation is not appropriate for Al
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods

- O. The discounted formulation is not appropriate for Al
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
- 4. A suite of continuing problems

- O. The discounted formulation is not appropriate for Al
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
- 4. A suite of continuing problems
- 5. Average-reward algorithms for the options framework

- O. The discounted formulation is not appropriate for Al
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
- 4. A suite of continuing problems
- 5. Average-reward algorithms for the options framework
- Planning with expectation models for control

- O. The discounted formulation is not appropriate for Al
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
- 4. A suite of continuing problems
- 5. Average-reward algorithms for the options framework
- Planning with expectation models for control
- Generalizing in the action space for large recommender systems

- O. The discounted formulation is not appropriate for Al
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
- 4. A suite of continuing problems
- 5. Average-reward algorithms for the options framework
- Planning with expectation models for control
- Generalizing in the action space for large recommender systems

- O. The discounted formulation is not appropriate for Al
 - Naik et al. (2019). Discounted Reinforcement Learning is Not an Optimization Problem. Optimization Foundations of RL workshop at NeurIPS.
- 1. One-step average-reward methods
 - Wan*, Naik*, Sutton. (2021). Learning and Planning in Average Reward Markov Decision Processes. ICML.
- 2. Multi-step average-reward methods
 - Naik & Sutton. (2022). Multi-step Average-Reward Prediction via Differential TD(λ). RLDM. Naik, Yu, Sutton. (2024). Multi-Step Off-Policy Average-Reward Prediction with Eligibility Traces. In preparation for a journal submission.
- 3. An idea to improve discounted-reward methods
 Naik et al. (2024). Reward Centering. Under review.
- 4. A suite of continuing problems
 - Naik et al. (2021). Towards Reinforcement Learning in the Continuing Setting. Never-Ending RL workshop at ICLR. Also, Zhao et al. (2022). CSuite. github.com/google-deepmind/csuite
- 5. Average-reward algorithms for the options framework
 - Wan, Naik, Sutton. (2021). Average-Reward Learning and Planning with Options. NeurIPS.
- Planning with expectation models for control
 - Kudashkina et al. (2021). Planning with Expectation Models for Control. ArXiv:2104.08543
- Generalizing in the action space for large recommender systems

Naik et al. (2023). Investigating Action-Space Generalization in Reinforcement Learning for Recommendation Systems RL4RecSys Workshop at WWW.

- O. The discounted formulation is not appropriate for Al
 - Naik et al. (2019). Discounted Reinforcement Learning is Not an Optimization Problem. Optimization Foundations of RL workshop at NeurIPS
- 1. One-step average-reward methods

Wan*, Naik*, Sutton. (2021). Learning and Planning in Average Reward Markov Decision Processes. ICML.

- 2. Multi-step average-reward methods
 - Naik & Sutton. (2022). Multi-step Average-Reward Prediction via Differential TD(λ). RLDM. Naik, Yu, Sutton. (2024). Multi-Step Off-Policy Average-Reward Prediction with Eligibility Traces. In preparation for a journal submission.
- 3. An idea to improve discounted-reward methods
 - Naik et al. (2024). Reward Centering. Under review.
- 4. A suite of continuing problems

Naik et al. (2021). Towards Reinforcement Learning in the Continuing Setting. Never-Ending RL workshop at ICLR. Also, Zhao et al. (2022). CSuite. github.com/google-deepmind/csuite

5. Average-reward algorithms for the options framework

Wan, Naik, Sutton. (2021). Average-Reward Learning and Planning with Options. NeurIPS

- Planning with expectation models for control
 - Kudashkina et al. (2021). Planning with Expectation Models for Control. ArXiv:2104.08543
- Generalizing in the action space for large recommender systems

Naik et al. (2023). Investigating Action-Space Generalization in Reinforcement Learning for Recommendation Systems RL4RecSys Workshop at WWW.

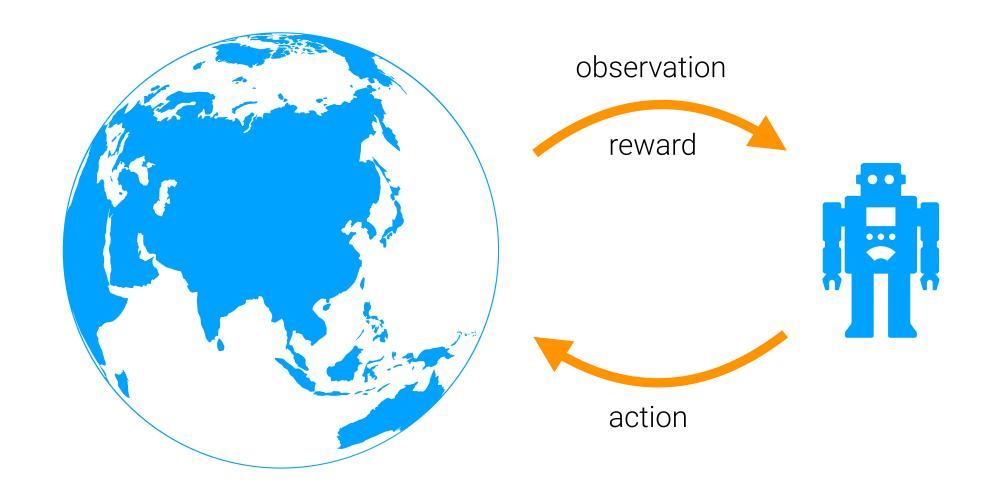
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods

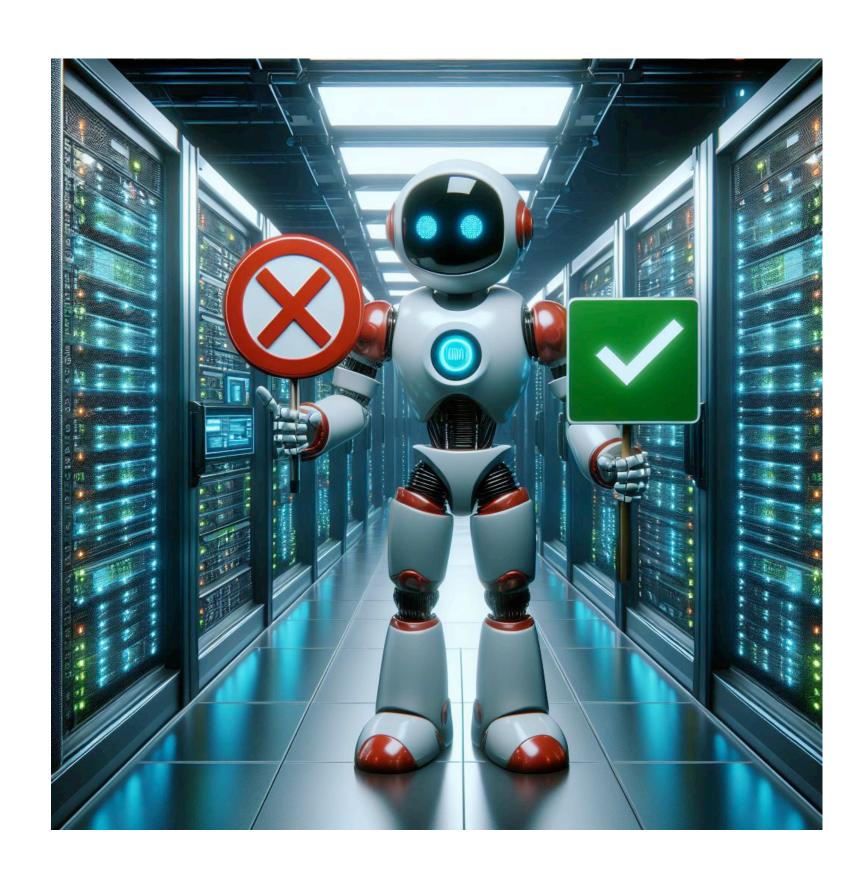
Problem setting

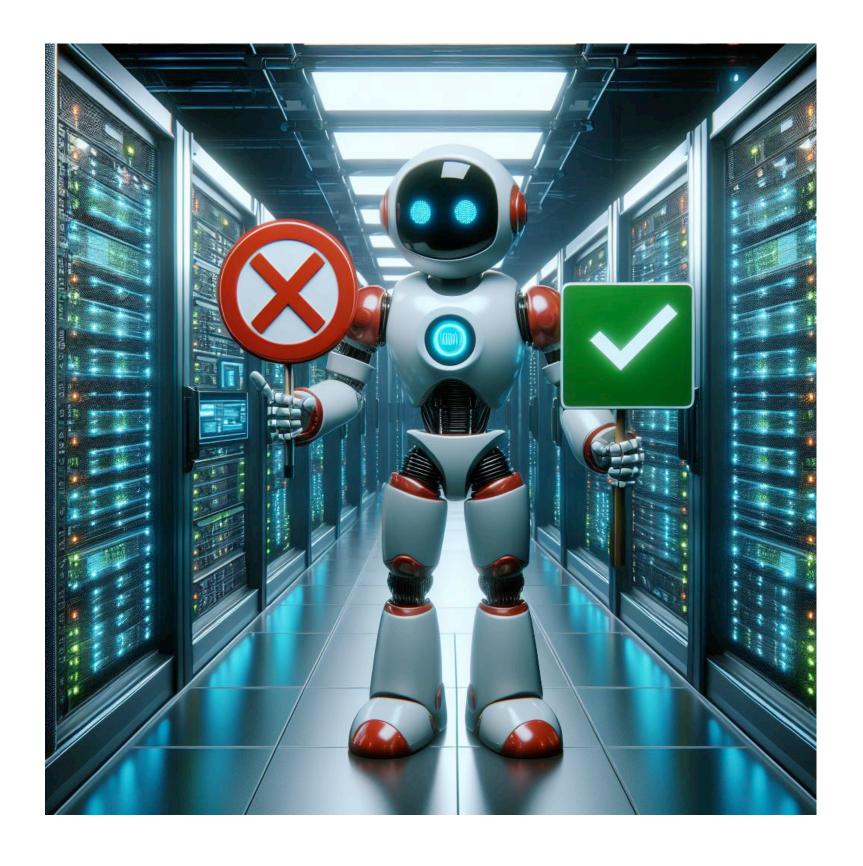
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve *discounted-reward* methods Conclusions, limitations, and future work

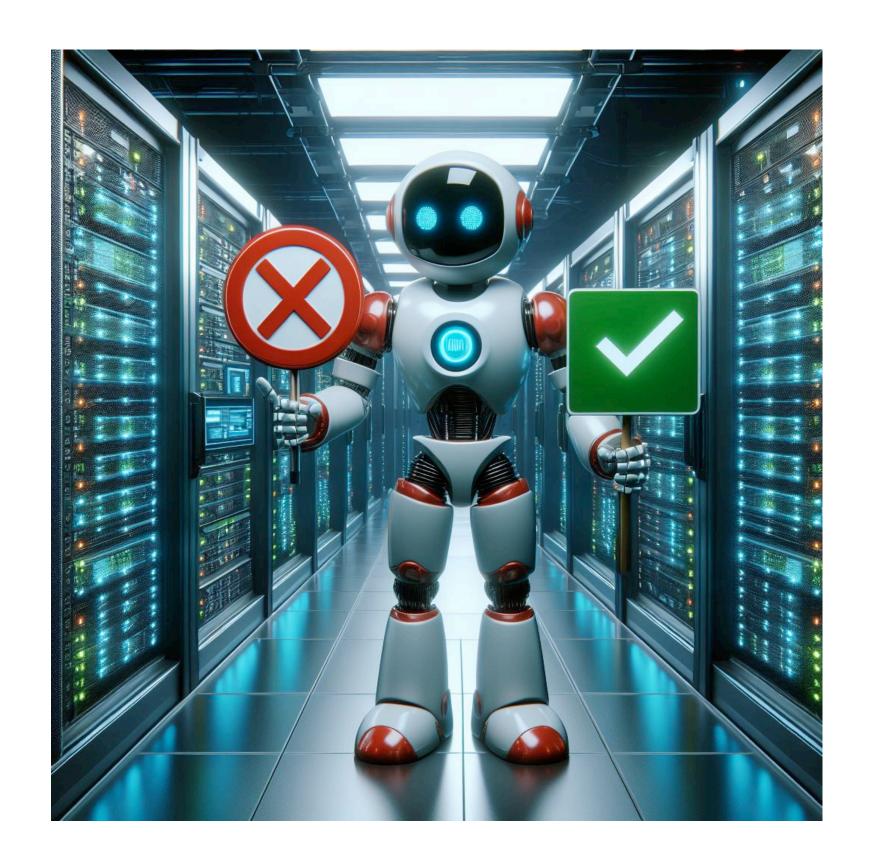
- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
 - Conclusions, limitations, and future work
 - Acknowledgments

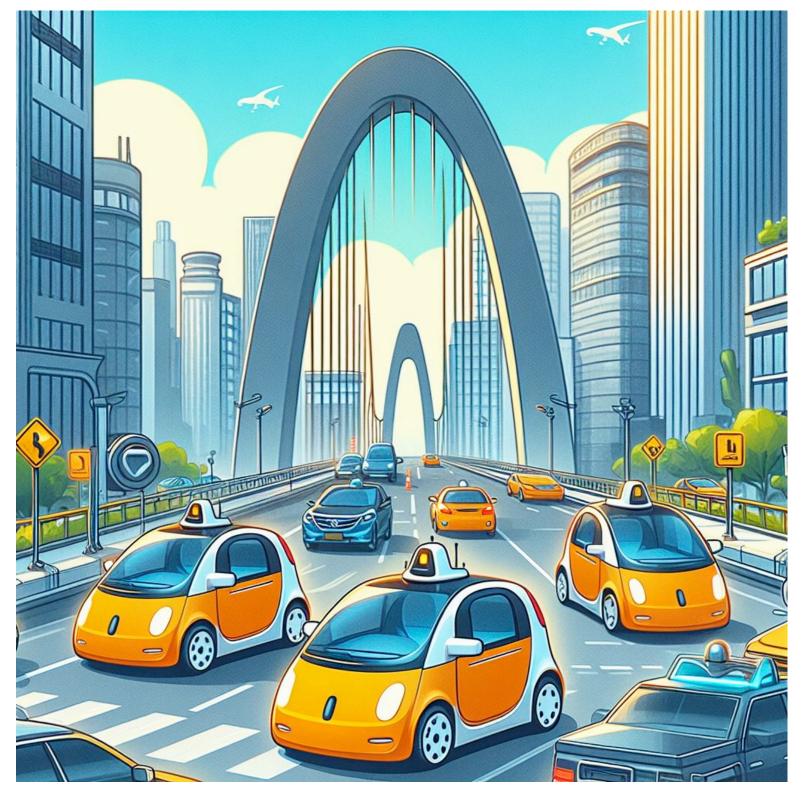






Images generated using DALL·E 3





Images generated using DALL·E 3

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} \sum_{t}^{\infty} R_{t}$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\sum_{\pi}^{\infty} R_{t}$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\sum_{\pi}^{\infty} R_{t}$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\sum_{\pi}^{\infty} R_{t}$$

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} \sum_{t}^{\infty} R_{t}$$

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\sum_{\pi}^{\infty} R_t$$

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \quad \gamma \in [0,1)$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} \sum_{t}^{\infty} R_{t}$$

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \qquad \gamma \in [0,1)$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\sum_{\pi}^{\infty} R_{t}$$

$$\max_{\pi} r(\pi)$$

$$\max_{\pi} \ v_{\pi}^{\gamma}(s), \forall s$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$\begin{split} R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots & \gamma \in [0,1) \\ v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s] \end{split}$$

CONTINUING PROBLEMS: FORMULATIONS

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} \sum_{t}^{\infty} R_{t}$$

Average-Reward Formulation

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

Discounted-Reward Formulation

$$\max_{\pi} \ v_{\pi}^{\gamma}(s), \forall s$$

$$R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \quad \gamma \in [0,1)$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

CONTINUING PROBLEMS: FORMULATIONS

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} \sum_{t}^{\infty} R_{t}$$

Average-Reward Formulation

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

Discounted-Reward Formulation

$$\max_{\pi} \ v_{\pi}^{\gamma}(s), \forall s$$

$$R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \qquad \gamma \in [0,1)$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

CONTINUING PROBLEMS: FORMULATIONS

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} \sum_{t}^{\infty} R_{t}$$

Average-Reward Formulation

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

Discounted-Reward Formulation

$$\max_{\pi} \ v_{\pi}^{\gamma}(s), \forall s$$

$$R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \qquad \gamma \in [0,1)$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \Big[\sum_{t=1}^{n} R_t \Big]$$

$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \Big[\sum_{t=1}^{n} R_t \Big]$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

Estimate $r(\pi)$ and \tilde{v}_{π}

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \Big[\sum_{t=1}^{n} R_t \Big]$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

The Prediction Problem

Estimate $r(\pi)$ and \tilde{v}_{π}

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

The Prediction Problem

Estimate $r(\pi)$ and \tilde{v}_{π}

Find π that maximizes $r(\pi)$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \Big[\sum_{t=1}^{n} R_t \Big]$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

The Prediction Problem

Estimate $r(\pi)$ and \tilde{v}_{π}

The Control Problem

Find π that maximizes $r(\pi)$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \Big[\sum_{t=1}^{n} R_t \Big]$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

The Prediction Problem

Estimate $r(\pi)$ and \tilde{v}_{π} while behaving according to b

The Control Problem

Find π that maximizes $r(\pi)$

while behaving according to b

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Average Reward
$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \Big[\sum_{t=1}^{n} R_t \Big]$$

Differential value function
$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s]$$

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

The Prediction Problem

Estimate $r(\pi)$ and \tilde{v}_{π} while behaving according to b

The Control Problem

Find π that maximizes $r(\pi)$

while behaving according to b

OUTLINE

Problem setting

- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve *discounted-reward* methods Conclusions, limitations, and future work Acknowledgments

OUTLINE

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve *discounted-reward* methods Conclusions, limitations, and future work Acknowledgments

WITH PARTICULAR FOCUS ON THE OFF-POLICY CONTROL SETTING

WITH PARTICULAR FOCUS ON THE OFF-POLICY CONTROL SETTING

Schwartz (1993), Singh (1994), Tadepalli & Ok (1994), Bertsekas & Tsitsiklis (1996), Das et al. (1999), Ren & Krogh (2001), Gosavi (2004), Yang et al. (2016)

WITH PARTICULAR FOCUS ON THE OFF-POLICY CONTROL SETTING

Schwartz (1993), Singh (1994), Tadepalli & Ok (1994), Bertsekas & Tsitsiklis (1996), Das et al. (1999), Ren & Krogh (2001), Gosavi (2004), Yang et al. (2016)

- Convergence results either not present,
- or, require special information about the problem.

WITH PARTICULAR FOCUS ON THE OFF-POLICY CONTROL SETTING

Schwartz (1993), Singh (1994), Tadepalli & Ok (1994), Bertsekas & Tsitsiklis (1996), Das et al. (1999), Ren & Krogh (2001), Gosavi (2004), Yang et al. (2016)

Abounadi, Bertsekas, & Borkar (2001): a big step forward

- Convergence results either not present,
- or, require special information about the problem.

 R_1 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$R_1 \quad R_2 \quad R_3 \quad \dots \quad R_{t-1} \quad R_t \quad R_{t+1} \quad \dots$$

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \rightarrow r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$r(b) = \sum_{s} d_{b}(s) \sum_{a} b(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$r(b) = \sum_{s} d_{b}(s) \sum_{a} b(a \mid s) \sum_{r} p(r \mid s, a) r$$
With ρ

With
$$\rho_t \doteq \frac{\pi(A_t | S_t)}{b(A_t | S_t)}$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$r(b) = \sum_{s} d_{b}(s) \sum_{a} b(a \mid s) \sum_{r} p(r \mid s, a) r$$

With
$$\rho_t \doteq \frac{\pi(A_t | S_t)}{b(A_t | S_t)}$$
 $\bar{R}_{\infty} \nrightarrow r(b)$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$r(b) = \sum_{s} d_{b}(s) \sum_{a} b(a \mid s) \sum_{r} p(r \mid s, a) r$$

With
$$\rho_t \doteq \frac{\pi(A_t | S_t)}{b(A_t | S_t)}$$
 $R_{\infty} \not\rightarrow r(b)$ $R_{\infty} \not\rightarrow r(\pi)$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \to r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$r(b) = \sum_{a} d_b(s) \sum_{b} b(a|s) \sum_{a} p(r|s,a) r$$

With
$$\rho_t \doteq \frac{\pi(A_t | S_t)}{b(A_t | S_t)}$$
 $\bar{R}_{\infty} \not\rightarrow r(b)$ $\bar{R}_{\infty} \not\rightarrow r(\pi)$

If
$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$R_1$$
 R_2 R_3 ... R_{t-1} R_t R_{t+1} ...

$$\bar{R}_t \doteq \frac{1}{t} \sum_{i=1}^t R_i$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \frac{1}{t+1} (R_{t+1} - \bar{R}_t)$$

Off-policy?

$$\bar{R}_{\infty} \to r(\pi)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{\infty} \rightarrow r(b)$$

$$r(\pi) = \sum_{s} d_{\pi}(s) \sum_{a} \pi(a \mid s) \sum_{r} p(r \mid s, a) r$$

$$r(b) = \sum_{a} d_b(s) \sum_{b} b(a|s) \sum_{a} p(r|s,a) r$$

With
$$\rho_t \doteq \frac{\pi(A_t | S_t)}{b(A_t | S_t)}$$
 $\bar{R}_{\infty} \not\rightarrow r(b)$ $\bar{R}_{\infty} \not\rightarrow r(\pi)$

If
$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$
 then $\bar{R}_{\infty} \to r(\pi)$

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

$$q_*^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*^{\gamma}(s', a') \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s' \ r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s' r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

$$q_*^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*^{\gamma}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s' \in \pi} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[\frac{R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a')}{Q_t(S_t, A_t)} - Q_t(S_t, A_t) \Big]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

$$q_*^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*^{\gamma}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s, A_t = a]$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{\sigma} p(s', r | s, a) \left[r + \gamma \max_{\sigma'} q_{*}^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{s' r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{s' \ r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, A_t = a]$$

$$q_*^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots \mid S_t = s, A_t = a]$$

$$\tilde{q}_*(s, a) = \sum_{s', r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_*(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[\frac{R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a')}{a'} - Q_t(S_t, A_t) \right]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s' \in \mathcal{S}} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{s' r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{\sigma} p(s', r | s, a) \left[r + \gamma \max_{\sigma'} q_{*}^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{s' r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[\frac{R_{t+1}}{R_{t+1}} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{s' r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[\frac{R_{t+1}}{R_{t+1}} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$q_{\pi}^{\gamma}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{t} = s, A_{t} = a]$$

$$q_{*}^{\gamma}(s, a) = \sum_{a'} p(s', r | s, a) \left[r + \gamma \max_{a'} q_{*}^{\gamma}(s', a') \right]$$

Discounted Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \Big[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \Big]$$

$$\delta_t^{\gamma}$$

$$\tilde{q}_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[R_{t+1} - r(\pi) + R_{t+2} - r(\pi) + \dots | S_t = s, A_t = a]$$

$$\tilde{q}_{*}(s, a) = \sum_{r} p(s', r | s, a) \left[r - \bar{r} + \max_{a'} \tilde{q}_{*}(s', a') \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[\frac{R_{t+1}}{R_{t+1}} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \, \delta_t$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \, \delta_t$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\begin{aligned} Q_{t+1}(S_t, A_t) &\doteq Q_t(S_t, A_t) + \alpha_t \big[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \big] \\ &\delta_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \beta_t \, \delta_t \end{aligned}$$

$$\tilde{q}_*(s,a) = \sum_{s',r} p(s',r \mid s,a) [r - \bar{r} + \max_{a'} \tilde{q}_*(s',a')]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\begin{aligned} Q_{t+1}(S_t, A_t) &\doteq Q_t(S_t, A_t) + \alpha_t \big[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \big] \\ &\delta_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \beta_t \, \delta_t \end{aligned}$$

$$\tilde{q}_*(s,a) = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a')] - \bar{r}$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$\bar{r} = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a')] - \tilde{q}_*(s,a)$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$\bar{r} = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a') - \tilde{q}_*(s,a)]$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$\bar{r} = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a') - \tilde{q}_*(s,a)]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) - \bar{R}_t)$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$\bar{r} = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a') - \tilde{q}_*(s,a)]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) - \bar{R}_t)$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \, \delta_t$$

$$\bar{r} = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a') - \tilde{q}_*(s,a)]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) - \bar{R}_t)$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Differential Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{\delta}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$\bar{r} = \sum_{s',r} p(s',r \mid s,a) [r + \max_{a'} \tilde{q}_*(s',a') - \tilde{q}_*(s,a)]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) - \bar{R}_t)$$

 δ_1

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\delta_t$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\beta_t$$

Differential Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\beta_t$$

RVI Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - f(Q_t) + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

Differential Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\beta_t$$

RVI Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \frac{f(Q_t)}{f(Q_t)} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

Differential Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\delta_t$$

RVI Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \frac{f(Q_t)}{f(Q_t)} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

Examples of f:

Differential Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\delta_t$$

RVI Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \frac{f(Q_t)}{f(Q_t)} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

Examples of f:

value of a single state—action pair

Differential Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\delta_t$$

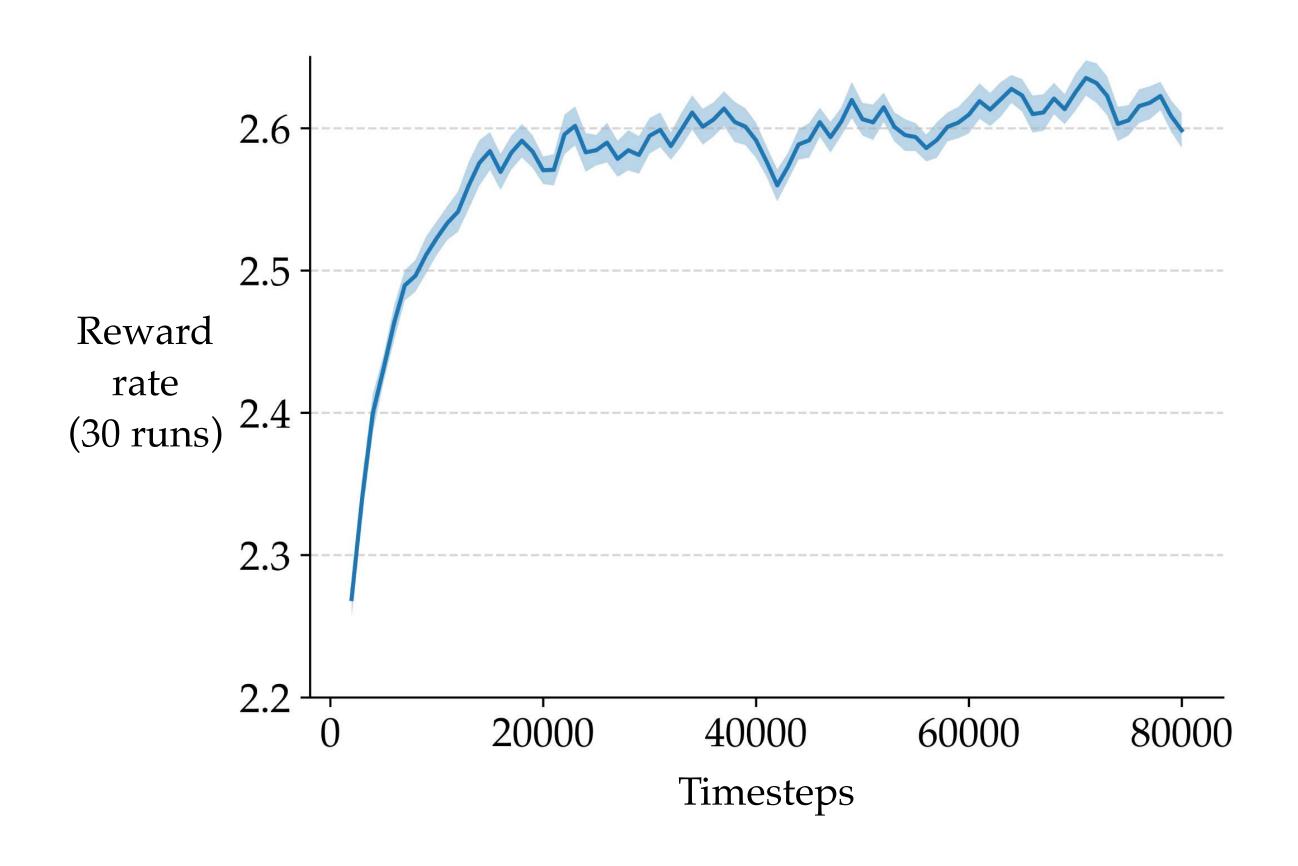
RVI Q-learning

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \frac{f(Q_t)}{f(Q_t)} + \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

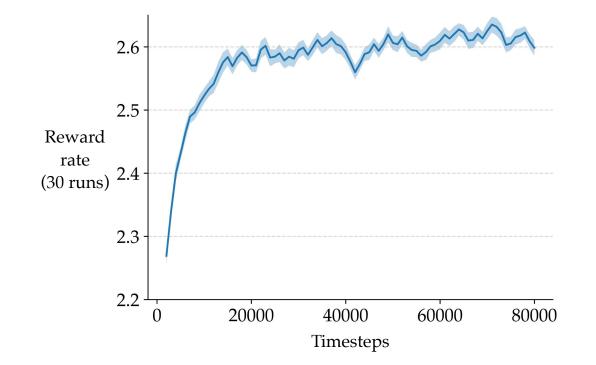
Examples of f:

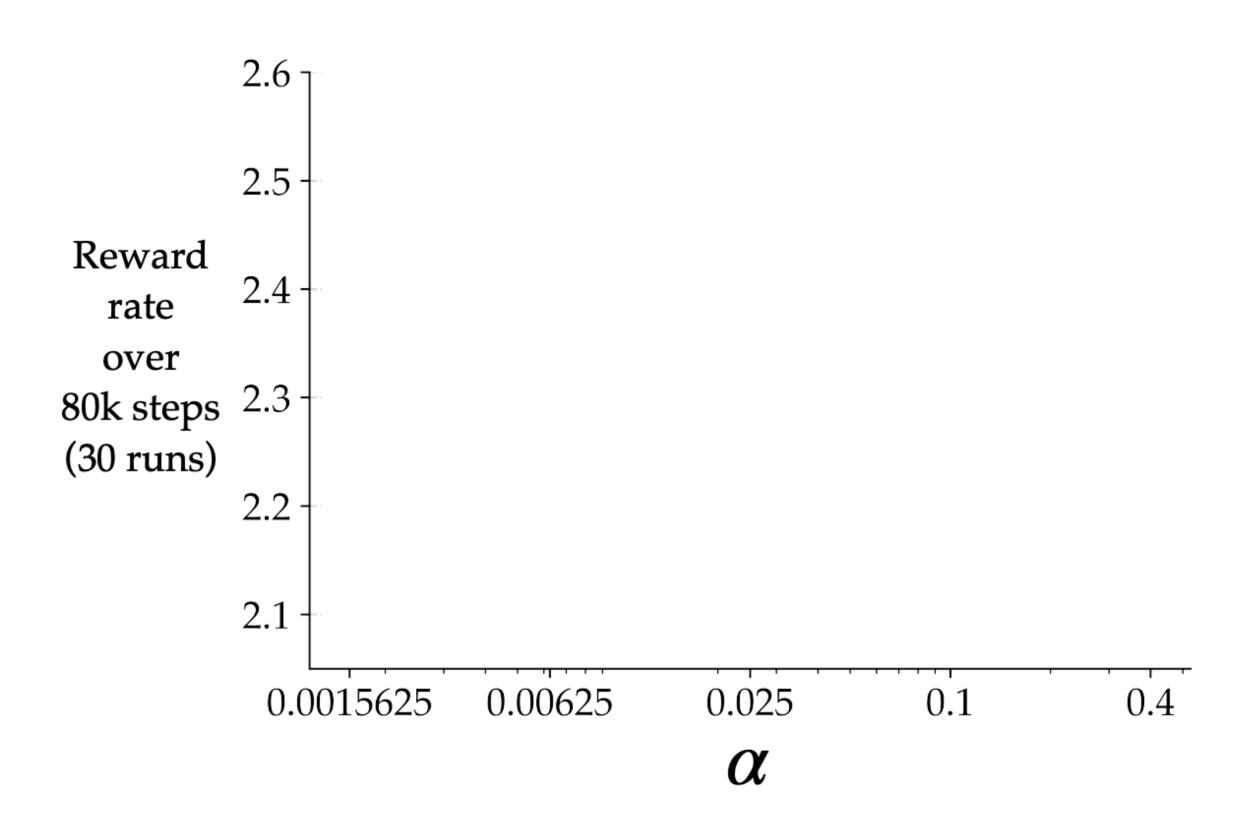
- value of a single state—action pair
- average of values of all state—action pairs

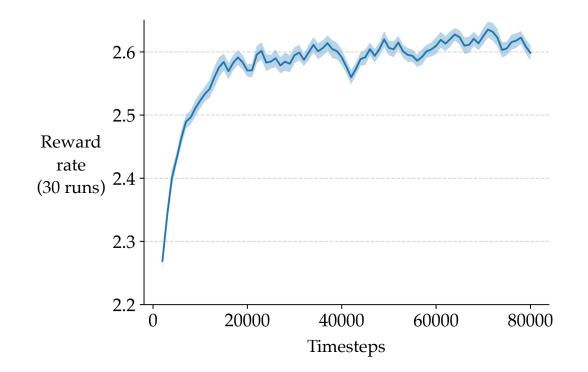
PERFORMANCE COMPARISON

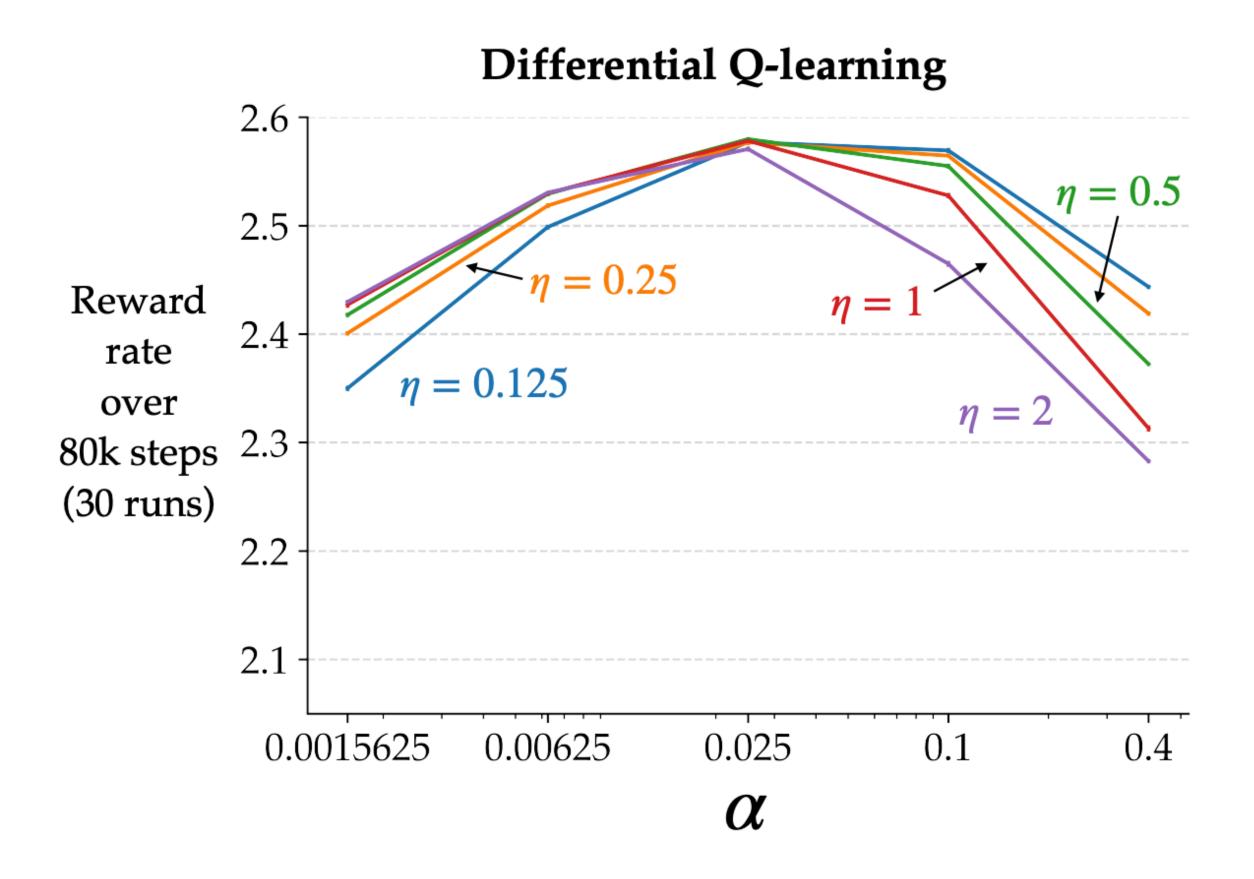


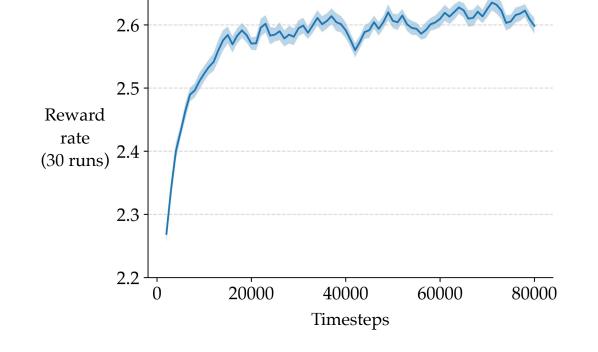
AccessControl

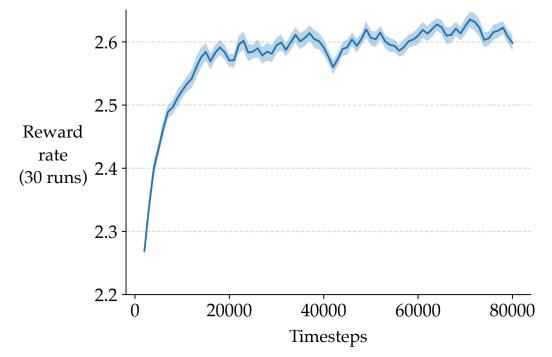


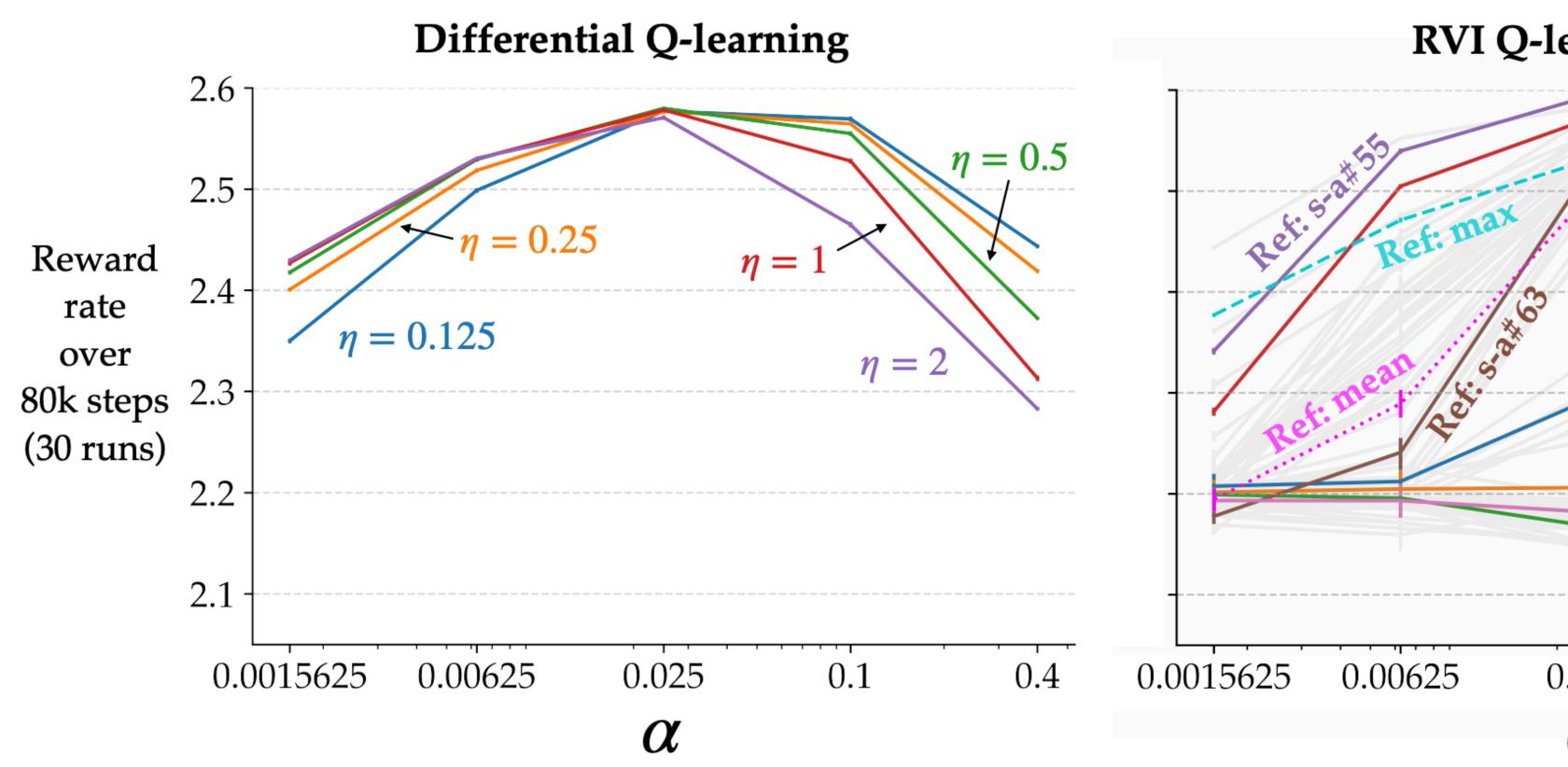


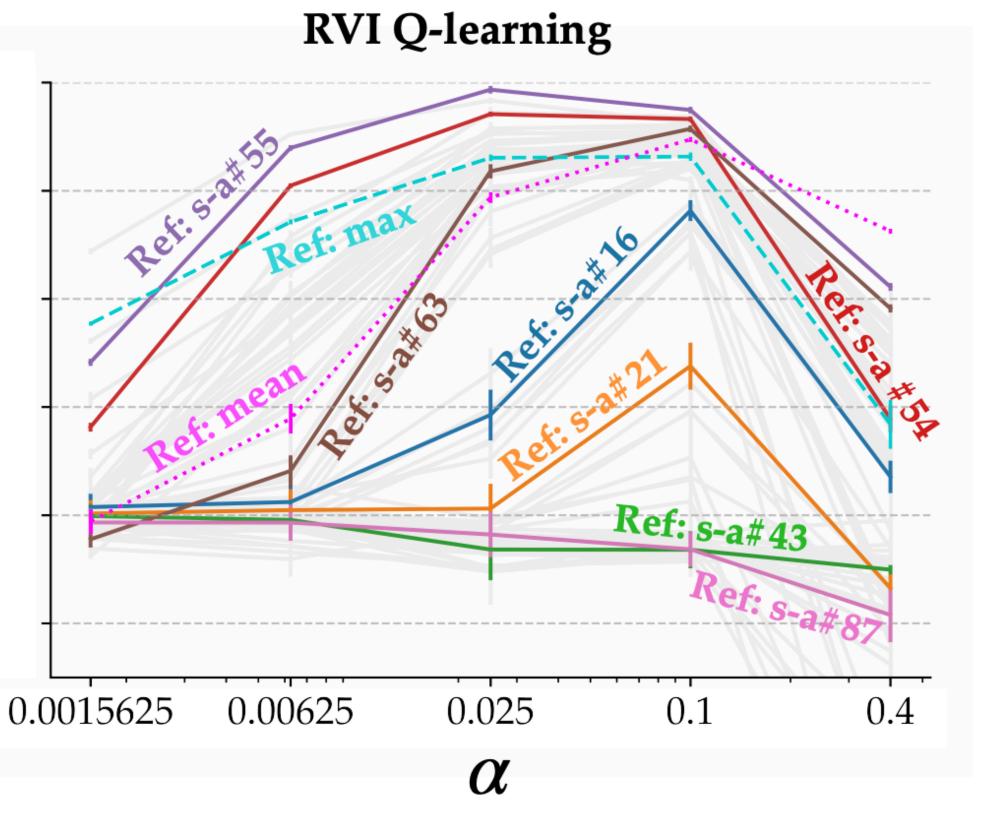












Differential Q-learning is a convergent algorithm for off-policy average-reward control.

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.
 - estimates both the average reward and the values accurately

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.
 - estimates both the average reward and the values accurately
 - is relatively easy to use

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.
 - estimates both the average reward and the values accurately
 - is relatively easy to use

More experiments, planning variants of these learning algorithms, convergence proofs, etc.:

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.
 - estimates both the average reward and the values accurately
 - is relatively easy to use

Convergence results
 limited to the tabular case

More experiments, planning variants of these learning algorithms, convergence proofs, etc.:

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.
 - estimates both the average reward and the values accurately
 - is relatively easy to use

- Convergence resultslimited to the tabular case
- No temporal abstraction

More experiments, planning variants of these learning algorithms, convergence proofs, etc.:

- Differential Q-learning is a convergent algorithm for off-policy average-reward control.
 - does not require a reference function
 - is relatively easy to use
- Differential TD-learning is a convergent algorithm for off-policy average-reward prediction.
 - estimates both the average reward and the values accurately
 - is relatively easy to use

- Convergence resultslimited to the tabular case
- No temporal abstraction
- All algorithms are one-step methods

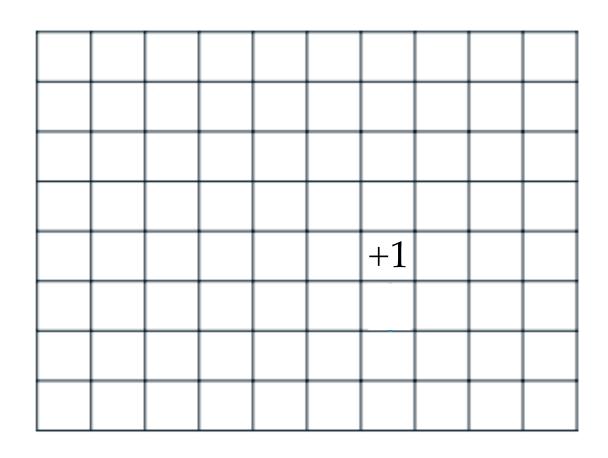
More experiments, planning variants of these learning algorithms, convergence proofs, etc.:

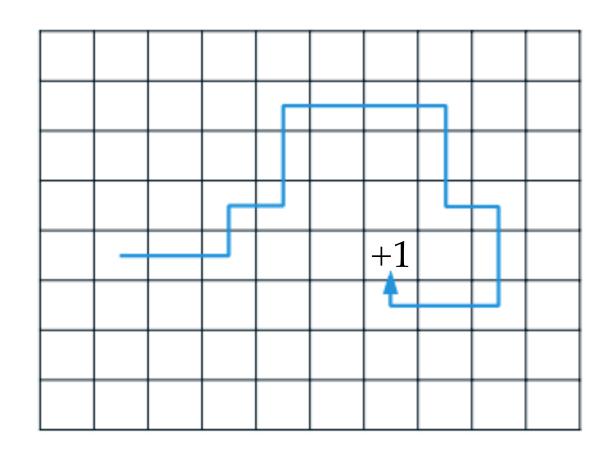
OUTLINE

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve *discounted-reward* methods Conclusions, limitations, and future work Acknowledgments

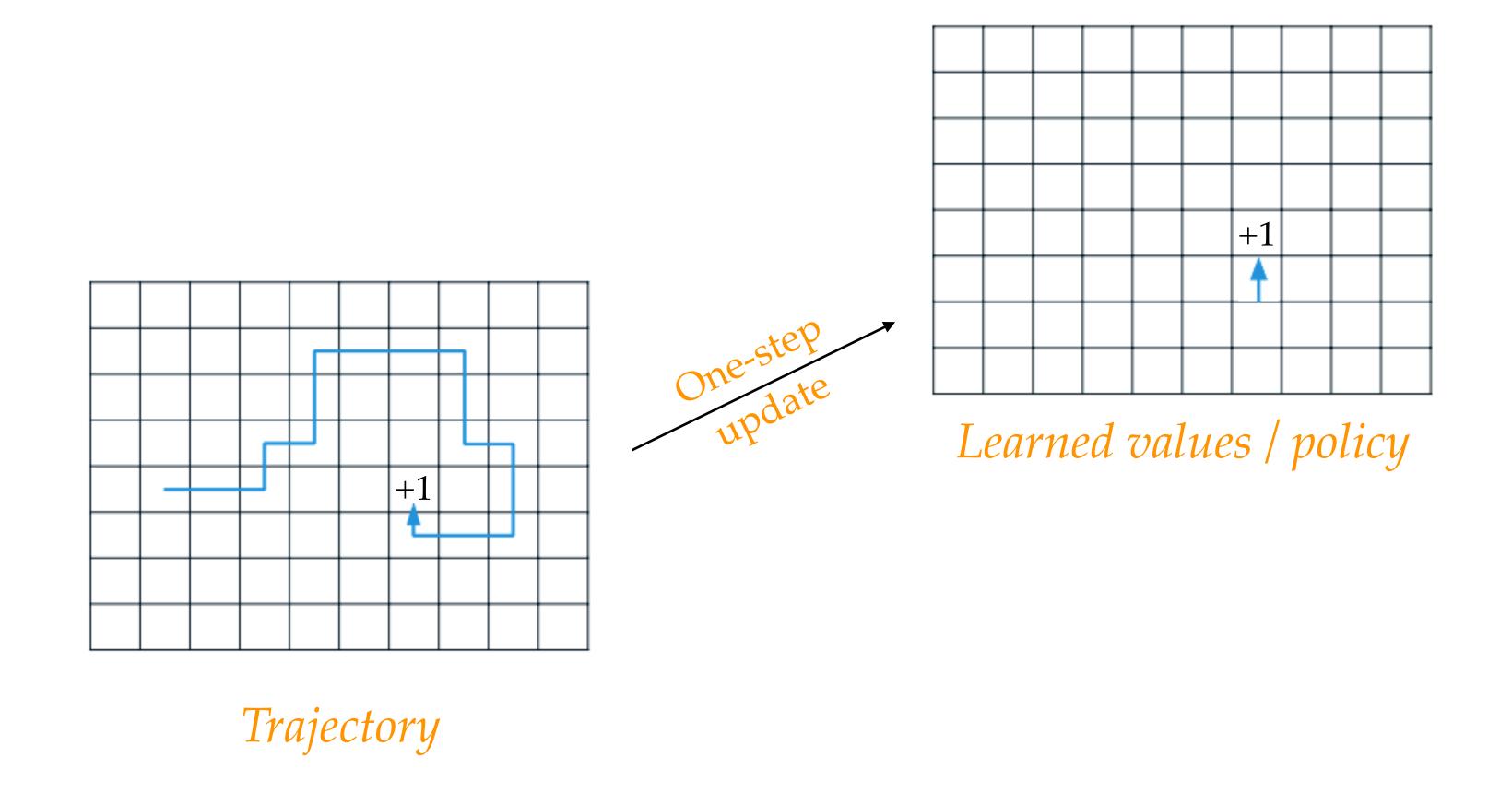
OUTLINE

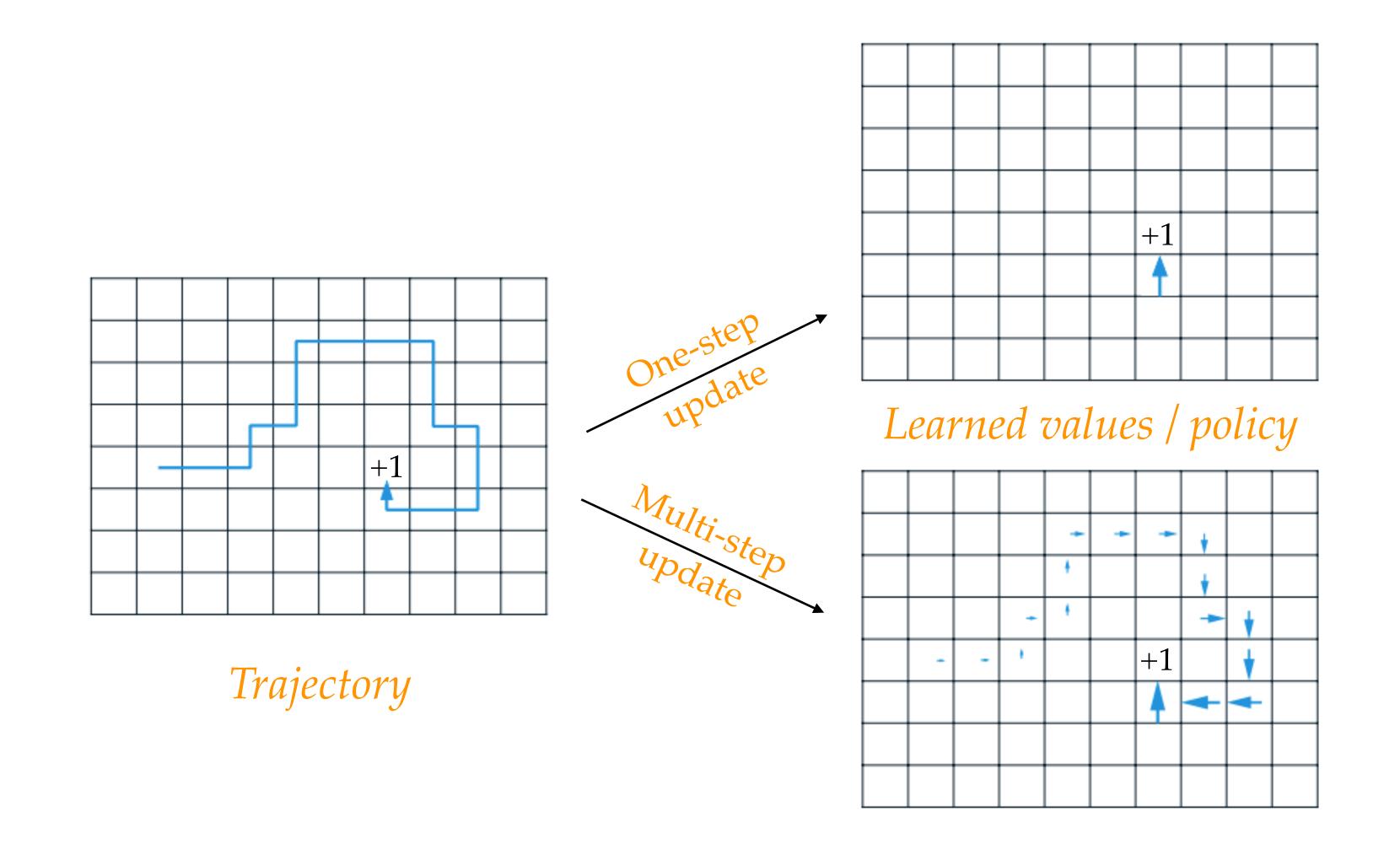
- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve *discounted-reward* methods Conclusions, limitations, and future work Acknowledgments





Trajectory





$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

Multi-step version

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t (R_{t+1} - \bar{R}_t)$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t (R_{t+1} - \bar{R}_t)$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

Average-Cost $TD(\lambda)$

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t (R_{t+1} - \bar{R}_t)$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

Average-Cost $TD(\lambda)$

Guaranteed to converge (Tsitsiklis & Van Roy, 1999)

$$v_{\pi}(s) \approx \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

One-step Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

Multi-step version

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \frac{(R_{t+1} - \bar{R}_t)}{(R_{t+1} - \bar{R}_t)}$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^\mathsf{T} \mathbf{x}_{t+1} + \mathbf{w}_t^\mathsf{T} \mathbf{x}_t$$

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

Algorithm 1

Also guaranteed to converge, under the same conditions

Average-Cost $TD(\lambda)$

Guaranteed to converge (Tsitsiklis & Van Roy, 1999)

(WHAT I'VE LEARNED ABOUT)

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS USING THE ODE APPROACH

(WHAT I'VE LEARNED ABOUT)

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS USING THE ODE APPROACH

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS USING THE ODE APPROACH

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS USING THE ODE APPROACH

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

2. Show the ODE has a globally stable equilibrium point.

PROVING CONVERGENCE OF SAMPLED-BASED ALGORITHMS USING THE ODE APPROACH

$$\mathbf{w}_0 \ \mathbf{w}_1 \ \dots \ \mathbf{w}_t \ \dots$$

1. Show that the sequence of iterates is bounded and asymptotically converges to the solutions of an ODE.

2. Show the ODE has a globally stable equilibrium point.

Proving the convergence of Algorithm 1 was fairly straightforward.

One-step off-policy Differential TD

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \rho_t \, \delta_t \, \mathbf{x}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned} \qquad \text{Mu}$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t$$

where

$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t$$
 where
$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \,|\, S_t)}{b(A_t \,|\, S_t)}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t$$
 where
$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\top} \mathbf{x}_{t+1} + \mathbf{w}_t^{\top} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \rho_t \delta_t \mathbf{x}_t$$
$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \rho_t \delta_t$$

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t$$
 where
$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$
 Multi-step version?

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \mathbf{w}_t^{\top} \mathbf{x}_{t+1} + \mathbf{w}_t^{\top} \mathbf{x}_t$$

$$\rho_t \doteq \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's (1999) Lemma 7)

(1999) Lemma 7)

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

(1999) Lemma 7)

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\mathsf{T}} (\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\top} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's

$$egin{array}{c} \mathbf{0}^{ op} \ \mathbf{D}_{\pi}(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{array}$$

(1999) Lemma 7)

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix} \text{ is } not \text{ Hurwitz.}$$
(via a simulation analysis)

$$\eta \, \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I})$$

$$\mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda}-\mathbb{I})$$

$$\mathbf{A}^{1} \doteq \begin{bmatrix} -\eta & \mathbf{0}^{\mathsf{T}} \\ \frac{-1}{1-\lambda} \mathbf{D}_{\pi} \mathbf{1} & \mathbf{D}_{\pi} (\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix}$$
 is Hurwitz. (Tsitsiklis & Van Roy's (1999) Lemma 7)

$$\mathbf{A}^{1off} \doteq \begin{bmatrix} -\eta & \eta \, \mathbf{d}_b^{\mathsf{T}}(\mathbf{P}_{\pi} - \mathbb{I}) \\ \frac{-1}{1 - \lambda} \mathbf{D}_b \mathbf{1} & \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I}) \end{bmatrix} \text{ is not Hurwitz.}$$
(via a simulation analysis)

So Algorithm 10ff can diverge...:(

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t$$
 where
$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t$$
 where
$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\mathbf{z}_t \doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

Algorithm 1

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \end{aligned}$$
 where
$$\begin{aligned} \mathbf{z}_t &\doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t \end{aligned}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\begin{aligned} \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \end{aligned}$$

One-step off-policy Differential TD

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} + \alpha_{t} \rho_{t} \delta_{t} \mathbf{x}_{t}$$

$$\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \rho_{t} \delta_{t}$$

$$\delta_{t} \doteq R_{t+1} - \bar{R}_{t} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t+1} + \mathbf{w}_{t}^{\mathsf{T}} \mathbf{x}_{t}$$

$$\rho_{t} \doteq \frac{\pi(A_{t} | S_{t})}{b(A_{t} | S_{t})}$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

Algorithm 2

Algorithm 1

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \, \delta_t$$
 where
$$\mathbf{z}_t \doteq \lambda \mathbf{z}_{t-1} + \mathbf{x}_t$$

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \rho_t \, \delta_t \end{aligned}$$
 where
$$\begin{aligned} \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \end{aligned}$$

ANALYSIS OF (TABULAR) ALGORITHM 2

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned} \\ \text{where} \quad \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

ANALYSIS OF (TABULAR) ALGORITHM 2

$$\begin{aligned} \mathbf{w}_{t+1} &\doteq \mathbf{w}_t + \alpha_t \, \delta_t \, \mathbf{z}_t \\ \bar{R}_{t+1} &\doteq \bar{R}_t + \eta \alpha_t \, \delta_t \, z_t^{\bar{R}} \\ \end{aligned}$$
 where
$$\begin{aligned} \mathbf{z}_t &\doteq \rho_t \, (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t) \\ \\ z_t^{\bar{R}} &\doteq \rho_t \, (\lambda z_{t-1}^{\bar{R}} + 1) \end{aligned}$$

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1} \mathbf{g}^{\mathsf{T}})$$

ANALYSIS OF (TABULAR) ALGORITHM 2

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha_t \delta_t \mathbf{z}_t$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t \mathbf{z}_t^{\bar{R}}$$
where
$$\mathbf{z}_t \doteq \rho_t (\lambda \mathbf{z}_{t-1} + \mathbf{x}_t)$$

$$z_t^{\bar{R}} \doteq \rho_t (\lambda z_{t-1}^{\bar{R}} + 1)$$

$$\mathbf{A} = \mathbf{D}_b(\mathbf{P}_{\pi}^{\lambda} - \mathbb{I} - \frac{\eta}{1 - \lambda} \mathbf{1}\mathbf{g}^{\mathsf{T}}) \text{ is Hurwitz!}$$

Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.
 - first convergence result for the multi-step off-policy setting!

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.
 - first convergence result for the multi-step off-policy setting!

Both algorithms are extensions of the one-step Differential TD-learning algorithm.

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.
 - first convergence result for the multi-step off-policy setting!

Both algorithms are extensions of the one-step Differential TD-learning algorithm.

Complete convergence analysis, experiments, etc.:

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Convergence results can be further generalized

- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.
 - first convergence result for the multi-step off-policy setting!

Both algorithms are extensions of the one-step Differential TD-learning algorithm.

Complete convergence analysis, experiments, etc.:

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.
 - first convergence result for the multi-step off-policy setting!

Both algorithms are extensions of the one-step Differential TD-learning algorithm.

- Convergence results can be further generalized
- Algorithms and analysis have to be fully extended to use function approximation

Complete convergence analysis, experiments, etc.:

- Algorithm 1 is a convergent multi-step algorithm for on-policy prediction with *linear* function approximation.
- Algorithm 2 is a member of a *family* of multi-step off-policy prediction algorithms that are guaranteed to converge in the *tabular* case.
 - first convergence result for the multi-step off-policy setting!

Both algorithms are extensions of the one-step Differential TD-learning algorithm.

- Convergence results can be further generalized
- Algorithms and analysis have to be fully extended to use function approximation
- Algorithm 2 may not be best among the family of algorithms

Complete convergence analysis, experiments, etc.:

OUTLINE

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve *discounted-reward* methods Conclusions, limitations, and future work Acknowledgments

OUTLINE

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
 - Conclusions, limitations, and future work
 - Acknowledgments

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Estimate the average reward and subtract it from the observed rewards

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Estimate the average reward and subtract it from the observed rewards

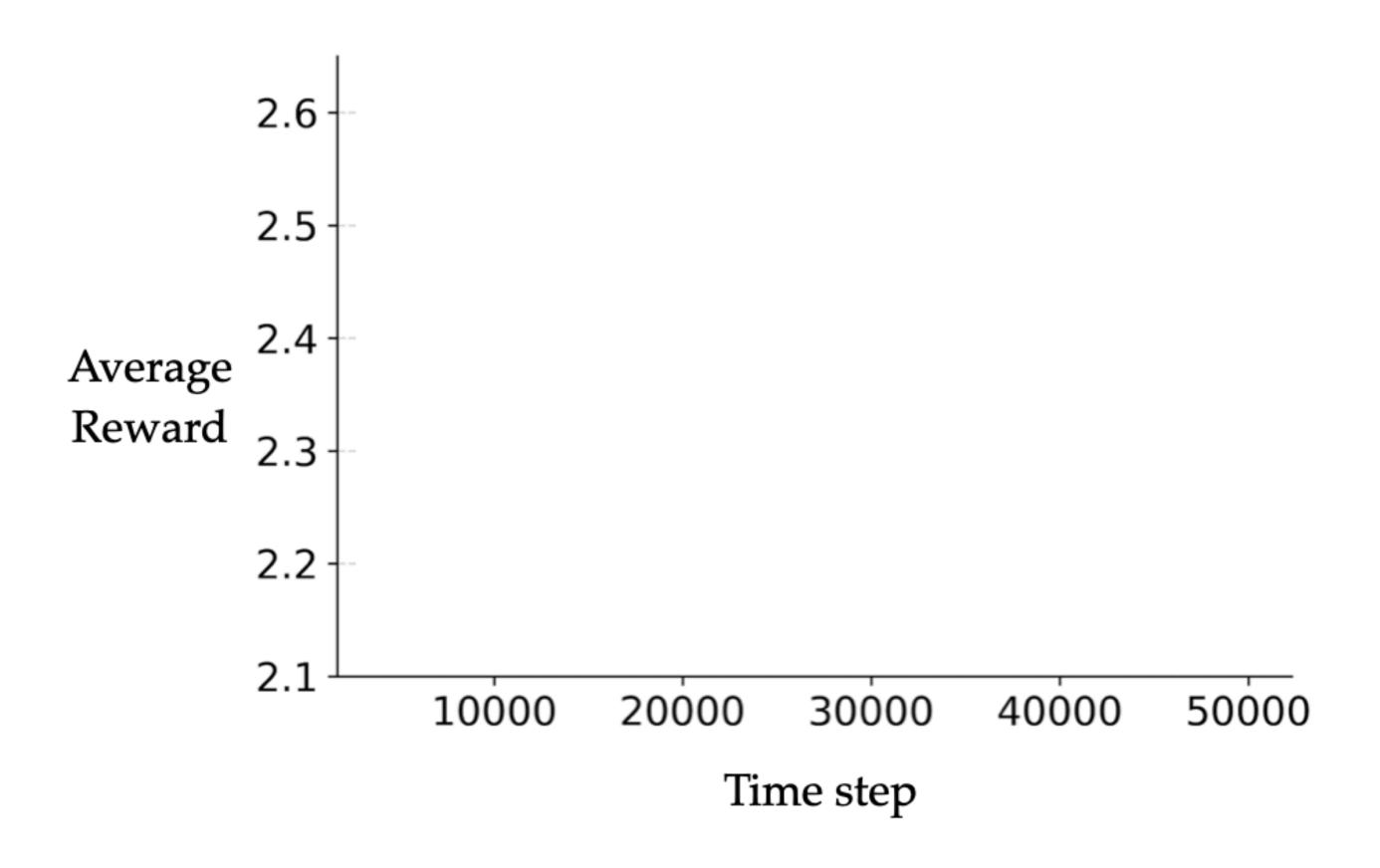
$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

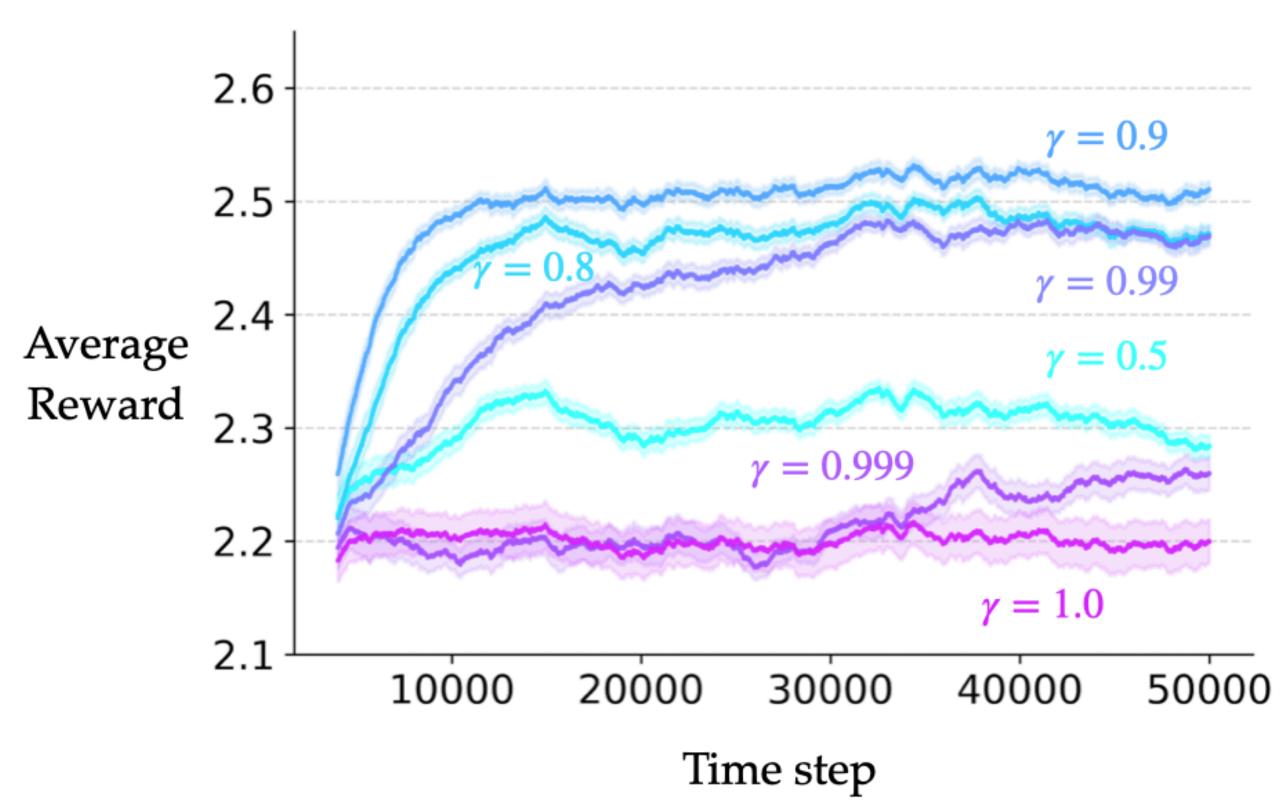
$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

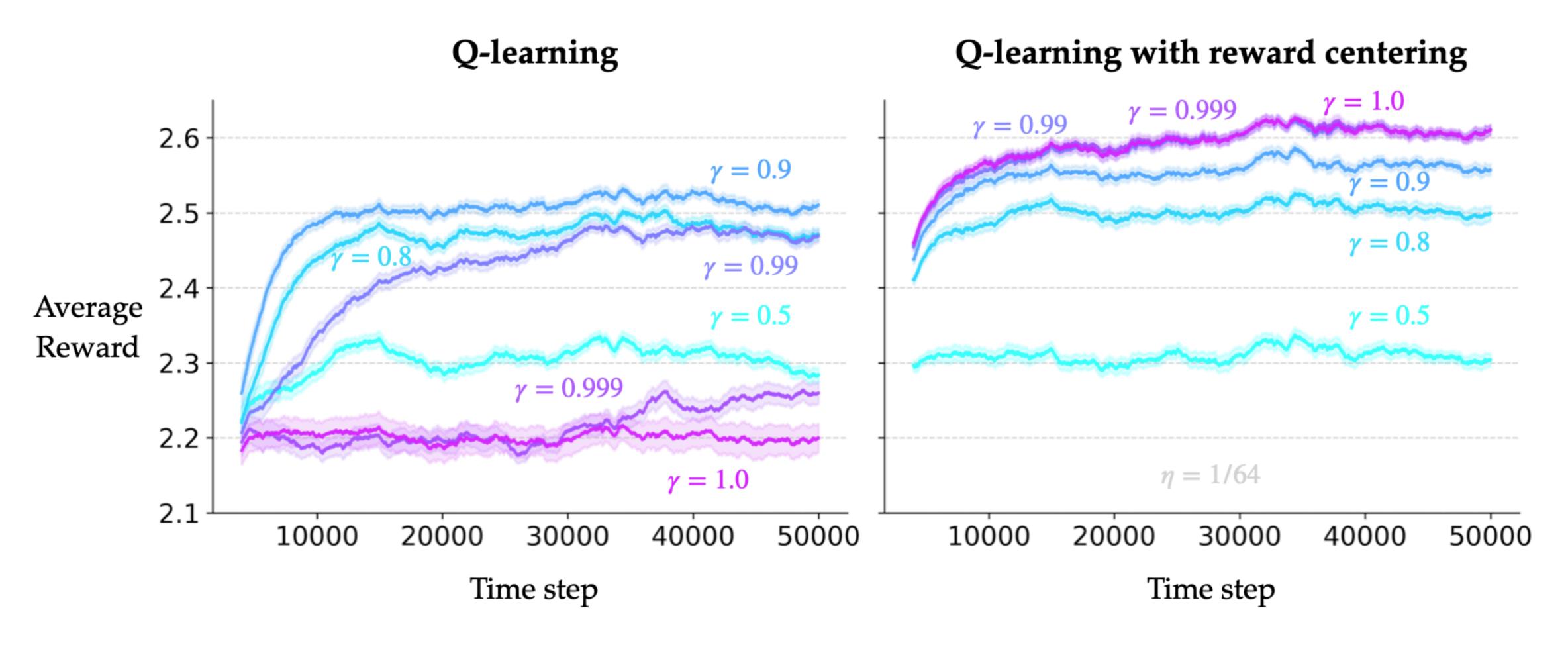
Estimate the average reward and subtract it from the observed rewards

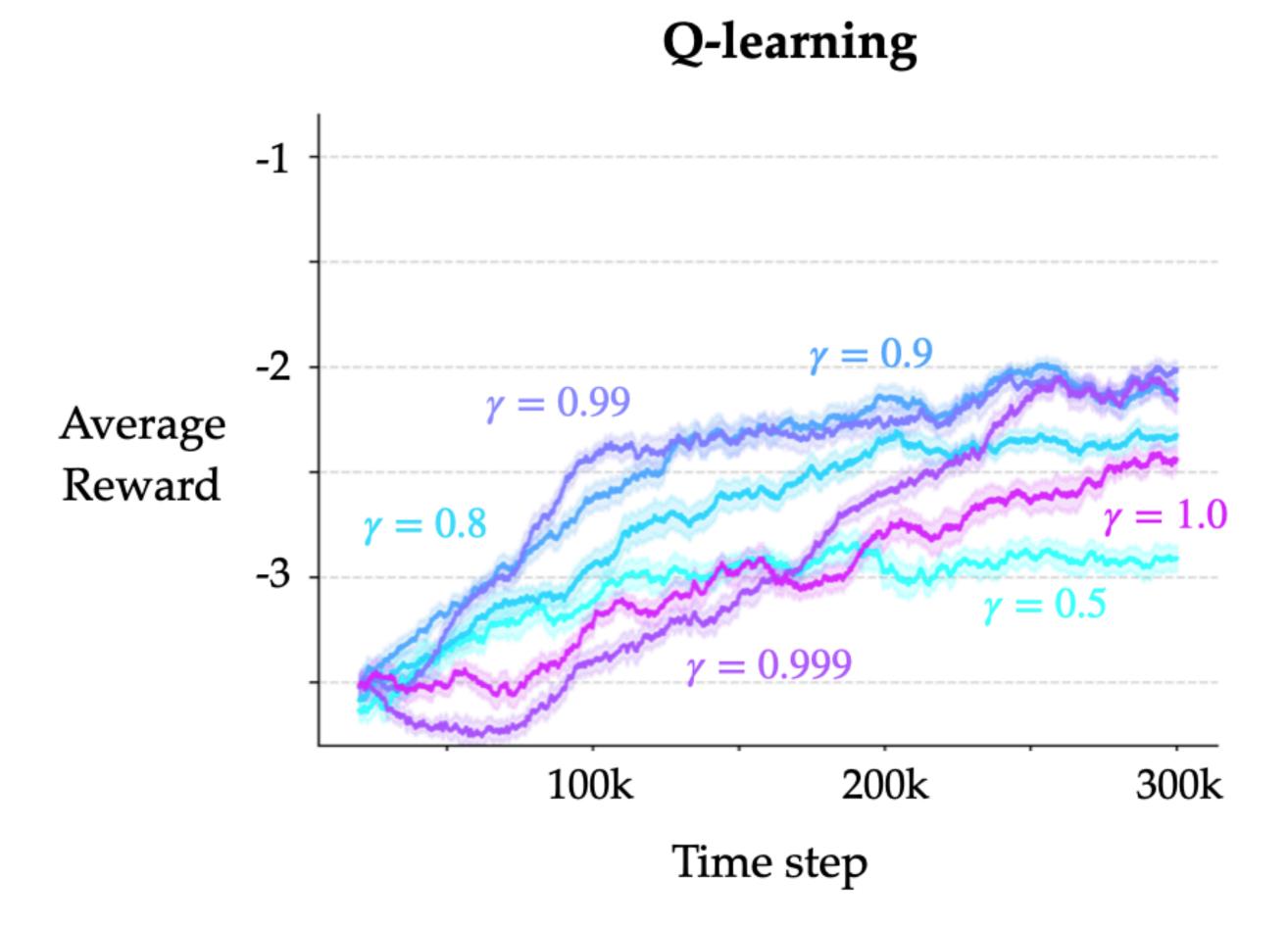
$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

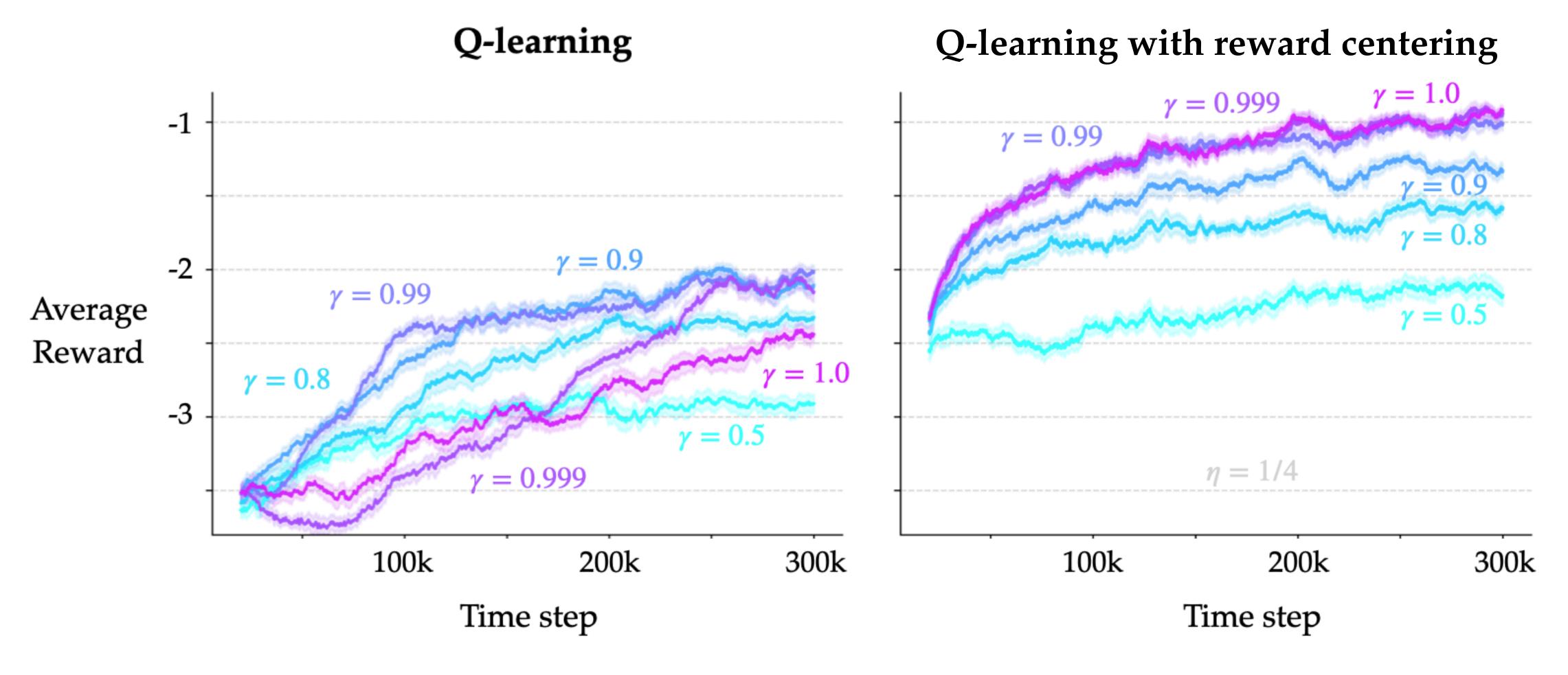
$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t [R_{t+1} - \bar{R}_t] + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t)]$$



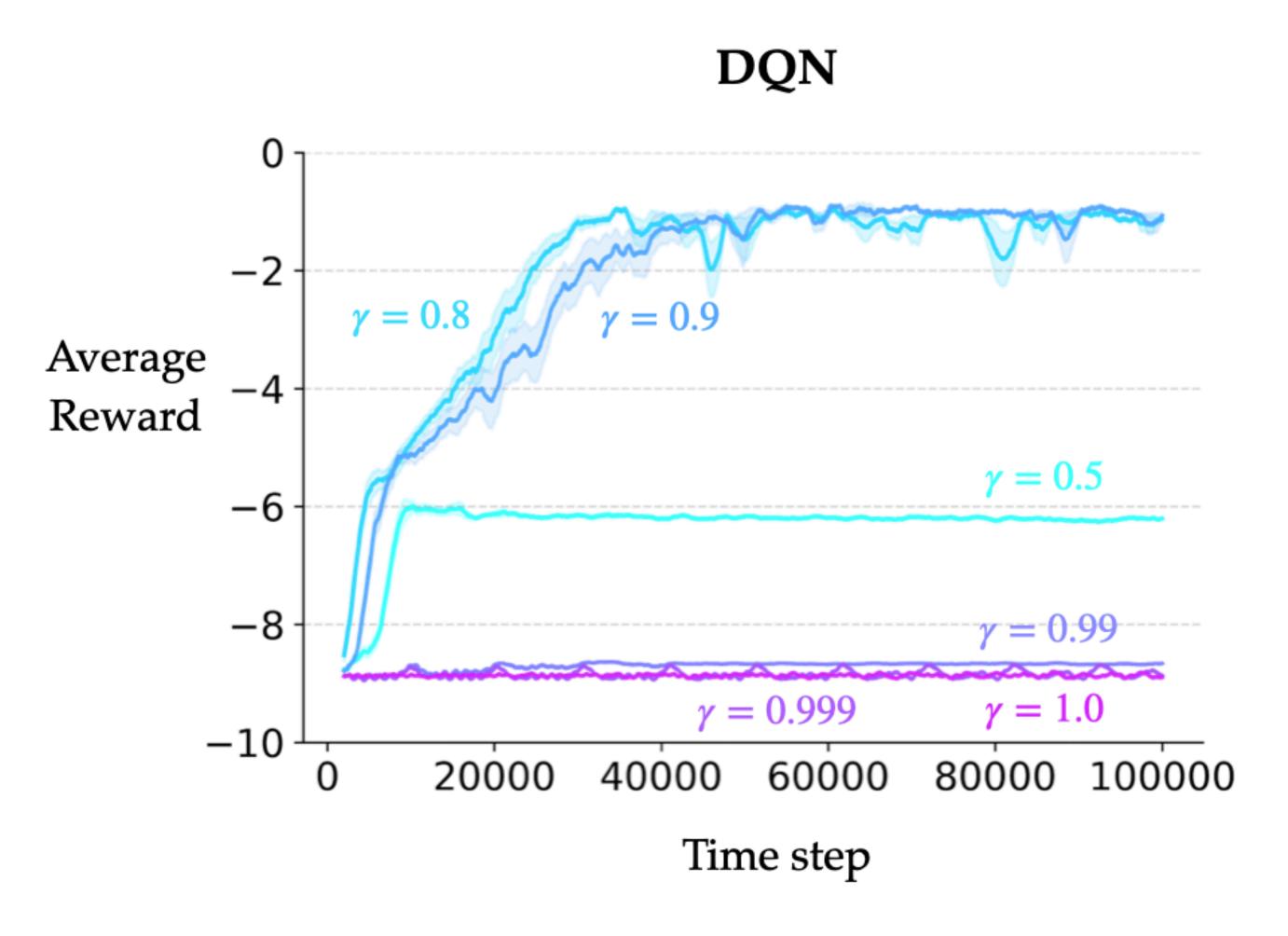


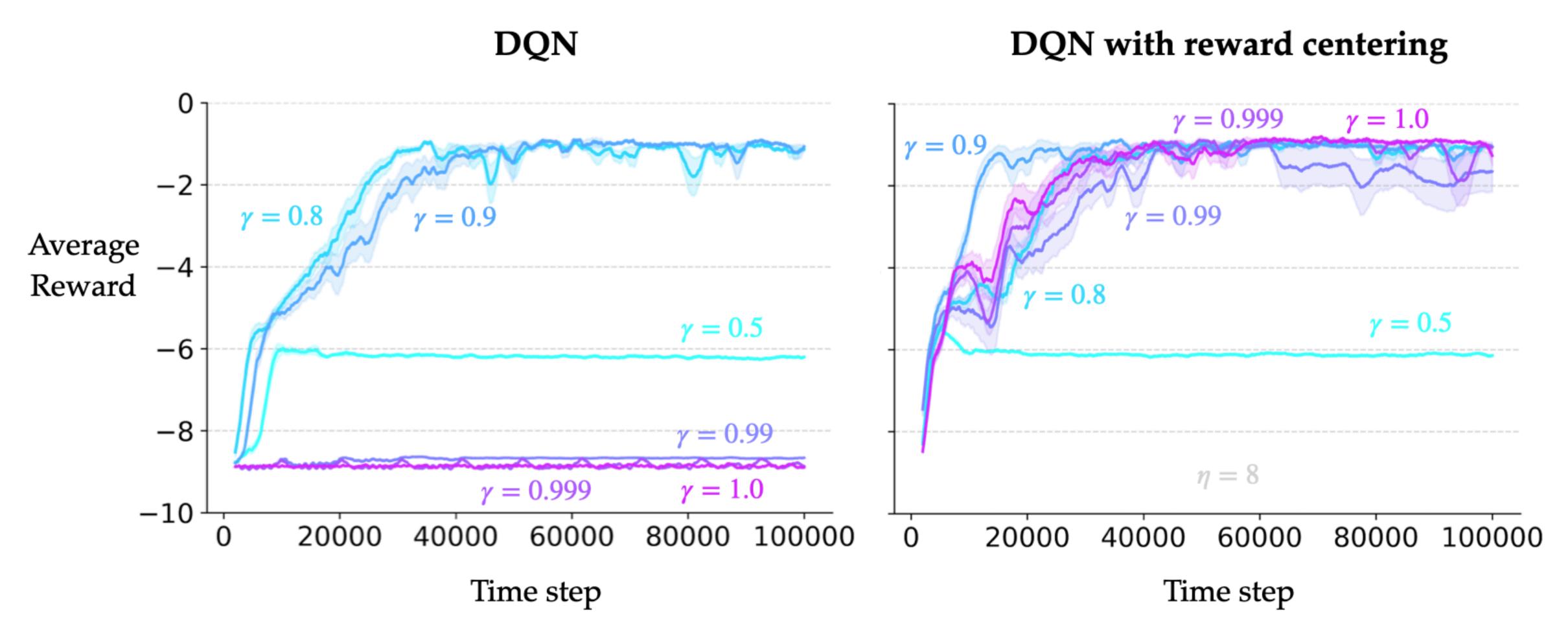




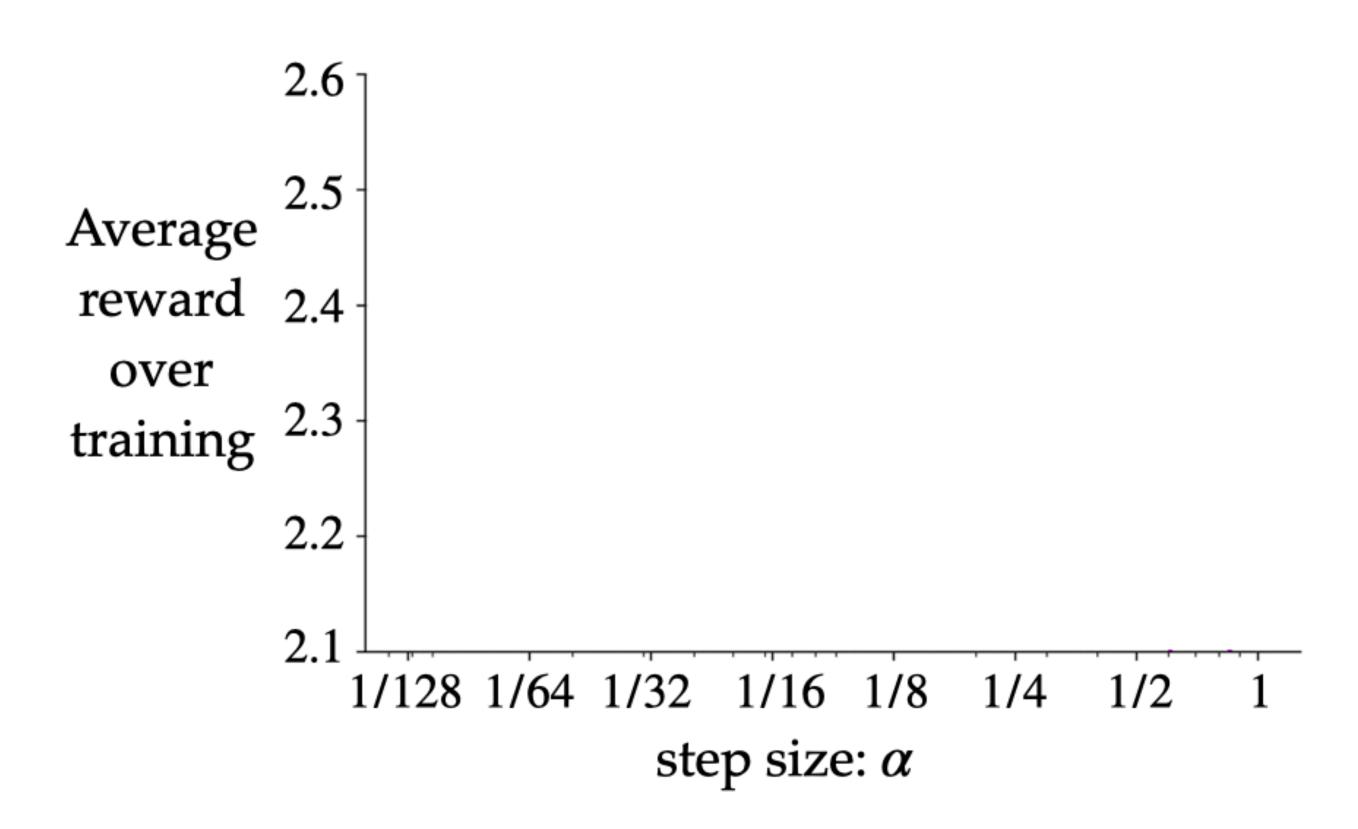


PuckWorld (linear FA)

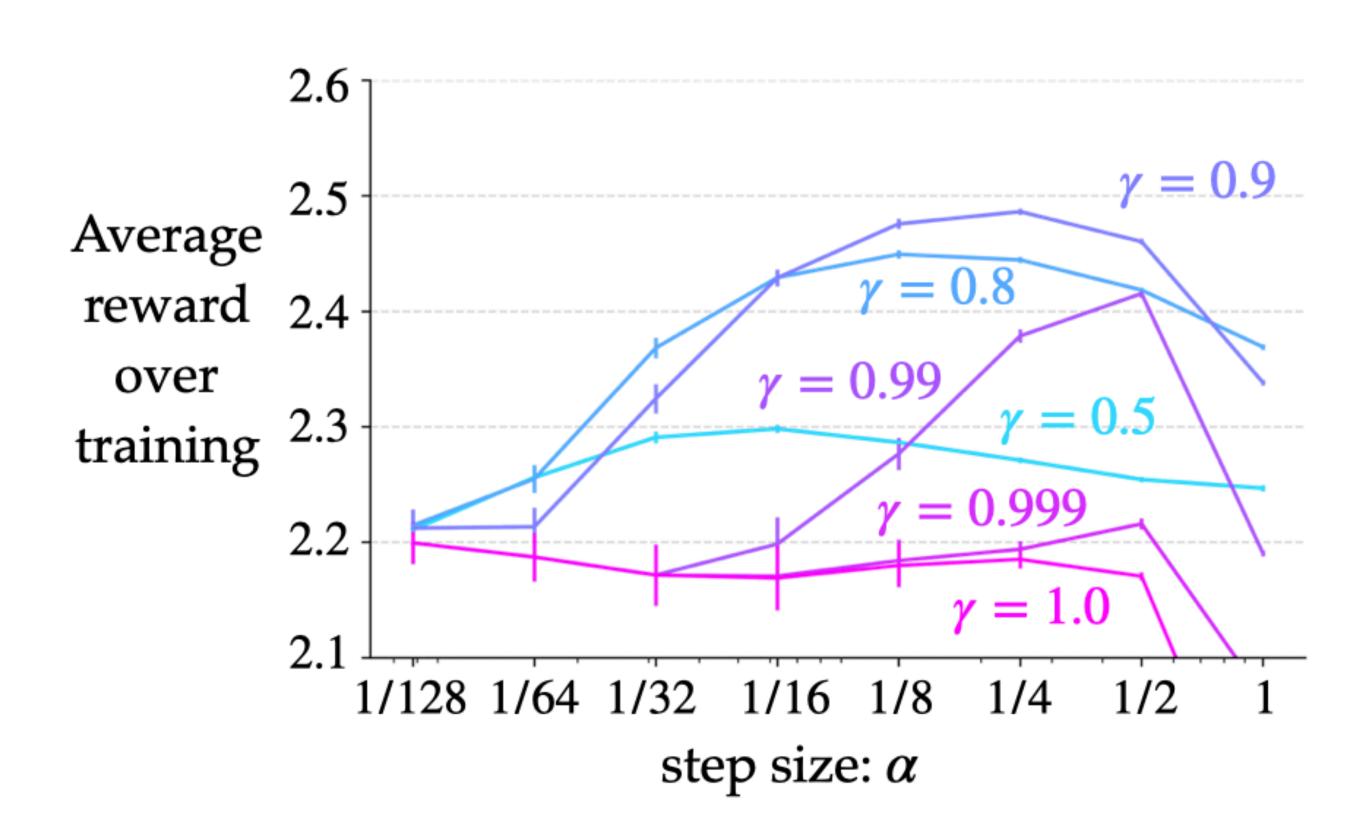


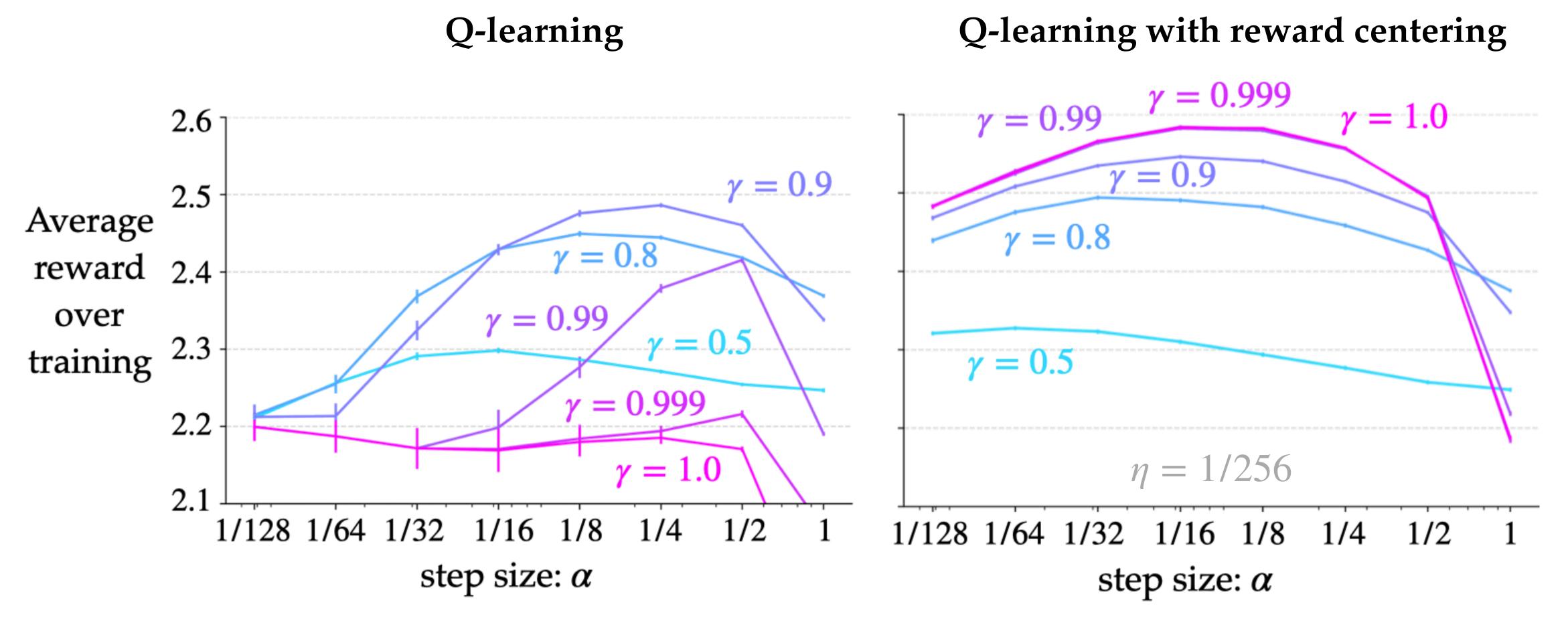


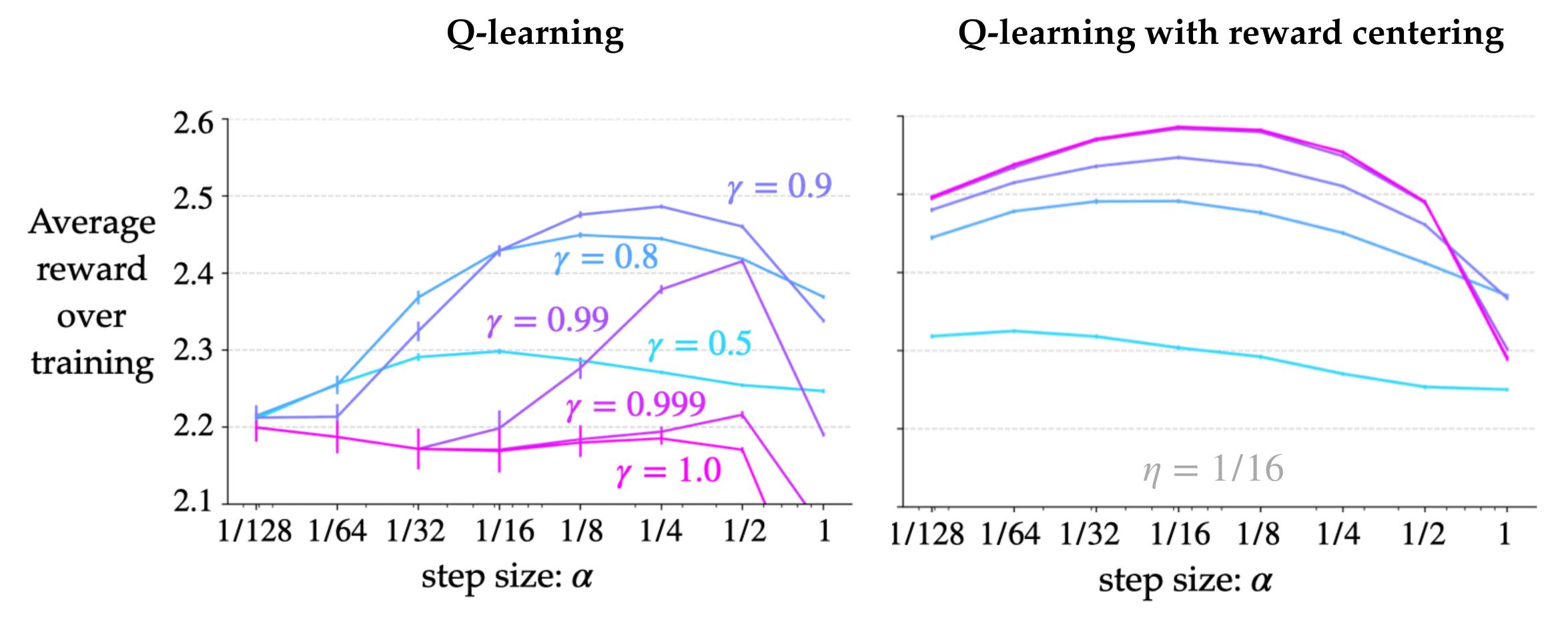
Pendulum (non-linear FA)

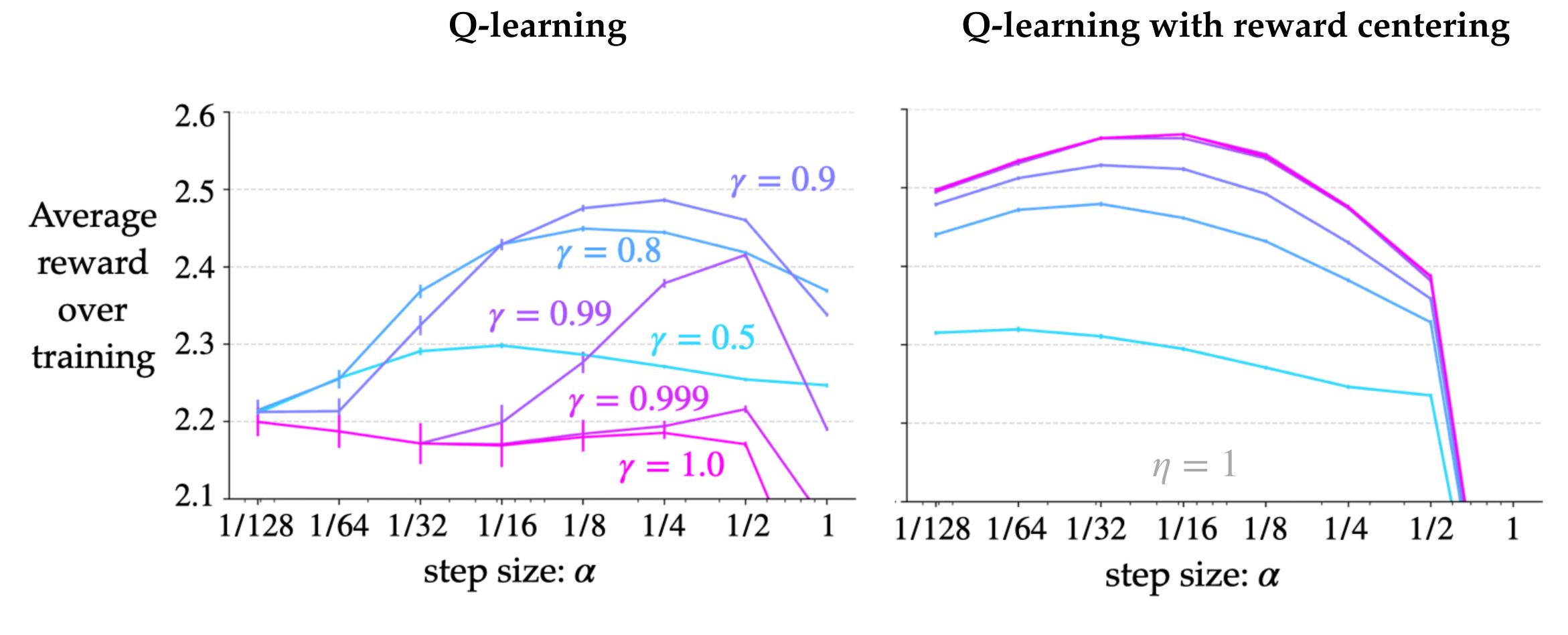


Q-learning









 R_{t+1} R_{t+2} R_{t+3} ... R_{t+n} ...

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$
 Standard discounted value function

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \\ = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \end{array}$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \\ = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \end{array}$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \\ = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \end{array}$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \big[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \big] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \end{array}$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \, | \, S_t = s \right]$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \big[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \big] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \end{array}$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \, | \, S_t = s \right]$$

$$v_{\pi}^{\gamma}(s) = \left(\frac{r(\pi)}{1-\gamma}\right) + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \big[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \big] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \\ = \mathbb{E}_{\pi} \big[\sum_{t=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \big] \end{array}$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1-\gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$\tilde{v}_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} \left(R_{t+k+1} - r(\pi) \right) \mid S_{t} = s \right]$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \big[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \big] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \\ = \mathbb{E}_{\pi} \big[\sum_{t=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \big] \end{array}$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$\tilde{v}_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} \left(R_{t+k+1} - r(\pi) \right) \mid S_{t} = s \right]$$

$$R_{t+1}$$
 R_{t+2} R_{t+3} \dots R_{t+n} \dots

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \big[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \big] \qquad \begin{array}{c} \text{Standard} \\ \text{discounted} \\ \text{value function} \\ = \mathbb{E}_{\pi} \big[\sum_{t=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \big] \end{array}$$

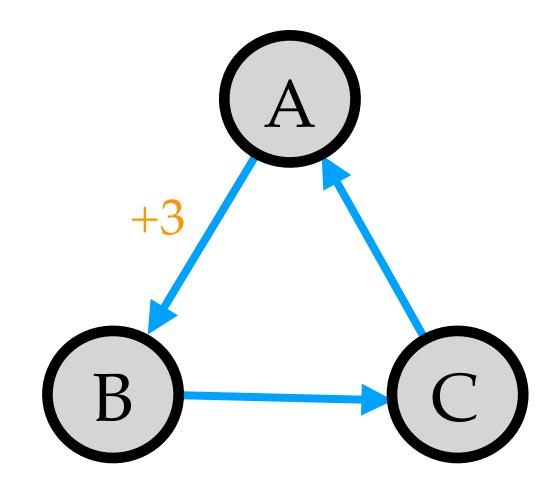
$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s), \quad \forall s$$

$$\tilde{v}_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \Big[\sum_{k=0}^{\infty} \gamma^{k} \Big(R_{t+k+1} - r(\pi) \Big) \, \big| \, S_{t} = s \Big]$$

Centered discounted value function

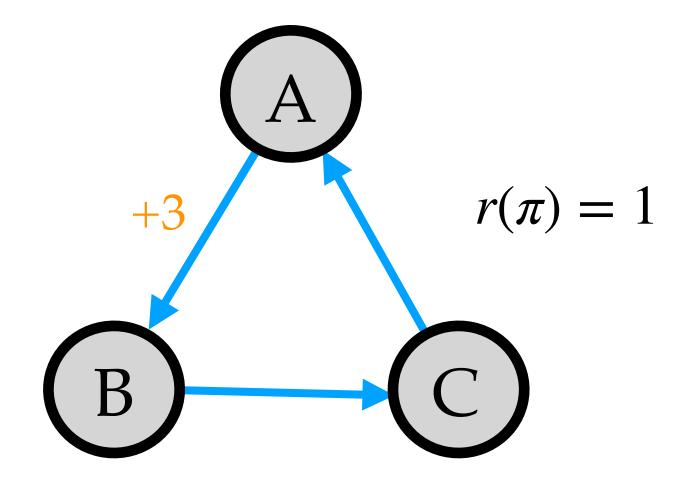
$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



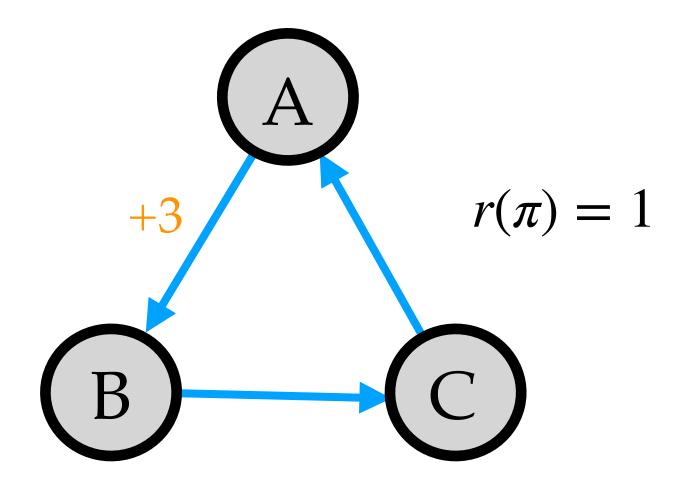
$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$

 $s_A \hspace{1cm} s_B \hspace{1cm} s_C$

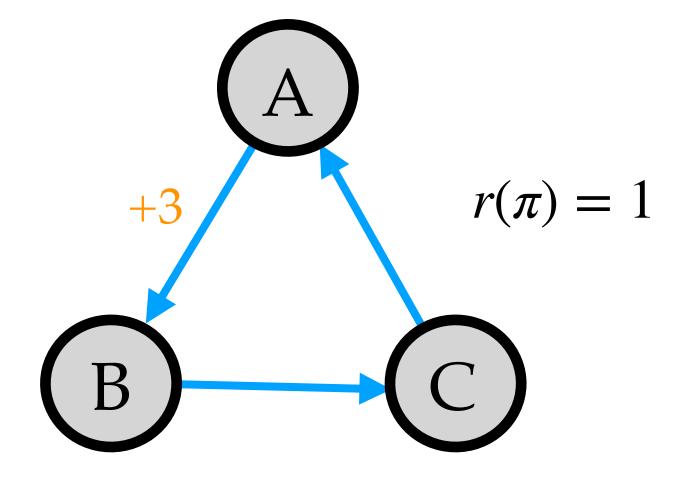
Standard discounted values

Centered discounted values

Differential values 1 -1 0

$$\frac{r(\pi)}{1 - \gamma}$$

$$\gamma = 0.8$$
5



$$s_A \hspace{1cm} s_B \hspace{1cm} s_C$$

$$\frac{r(\pi)}{1-\gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

 $\tilde{v}_{\pi}^{\gamma}(s)$

Standard discounted values

Centered discounted values

Differential values 1 -1 0

$$\frac{r(\pi)}{1 - \gamma}$$

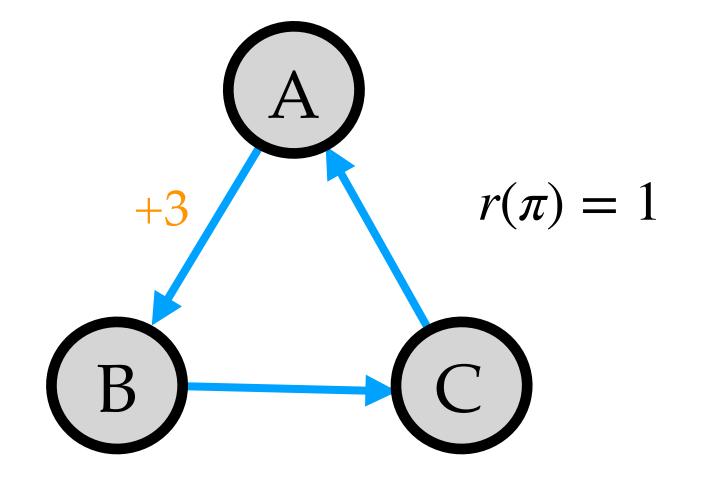
$$\gamma = 0.8$$
5

$$\frac{r(\pi)}{1 - \gamma}$$

$$\gamma = 0.8$$
5

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



		s_A	s_B	s_C
Standard discounted values	$\gamma = 0.8$	6.15	3.93	4.92
Centered discounted values	$\gamma = 0.8$	1.15	-1.07	-0.08
Differential values		1	-1	0

$$r(\pi)$$

$$1 - \gamma$$

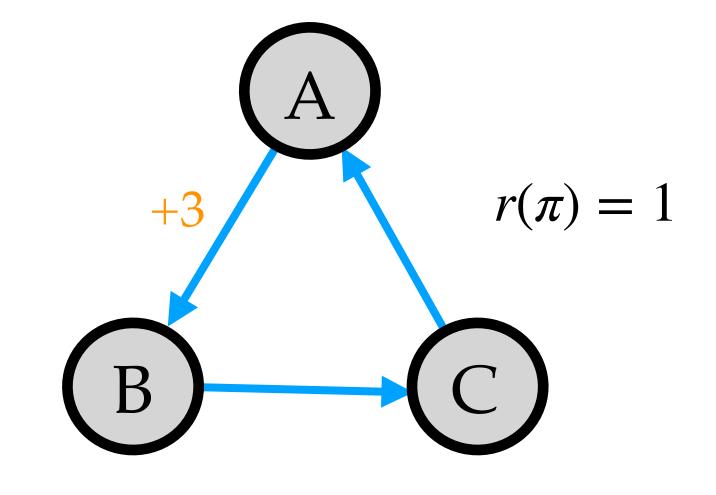
$$\gamma = 0.8$$

$$\gamma = 0.9$$

$$10$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



		s_A	s_B	s_C
Standard discounted values	$\gamma = 0.8$ $\gamma = 0.9$	6.15 11.07	3.93 8.97	4.92 9.96
Centered discounted values	$\gamma = 0.8$ $\gamma = 0.9$	1.15 1.07	-1.07 -1.03	-0.08 -0.04
Differential values		1	-1	0

$$r(\pi)$$

$$1 - \gamma$$

$$\gamma = 0.8$$

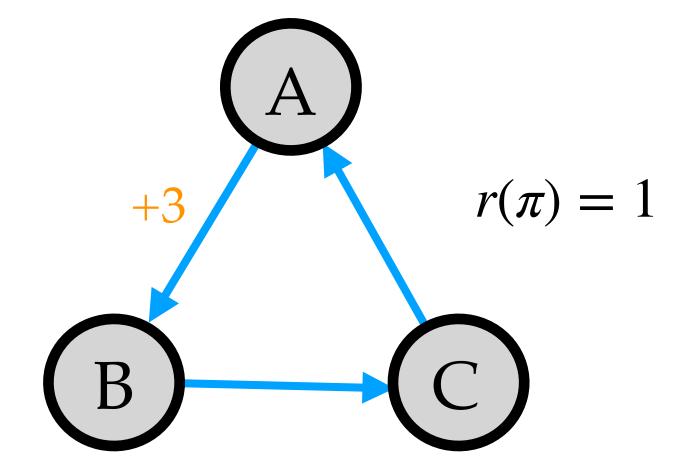
$$\gamma = 0.9$$

$$\gamma = 0.99$$

$$100$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



		s_A	s_B	s_C
Standard discounted values	$\gamma = 0.8$ $\gamma = 0.9$ $\gamma = 0.99$	6.15 11.07 101.01	3.93 8.97 98.99	4.92 9.96 99.99
Centered discounted values	$\gamma = 0.8$ $\gamma = 0.9$ $\gamma = 0.99$	1.15 1.07 1.01	-1.07 -1.03 -1.01	-0.08 -0.04 -0.01
Differential values		1	-1	0

$$\frac{r(\pi)}{1-\gamma}$$

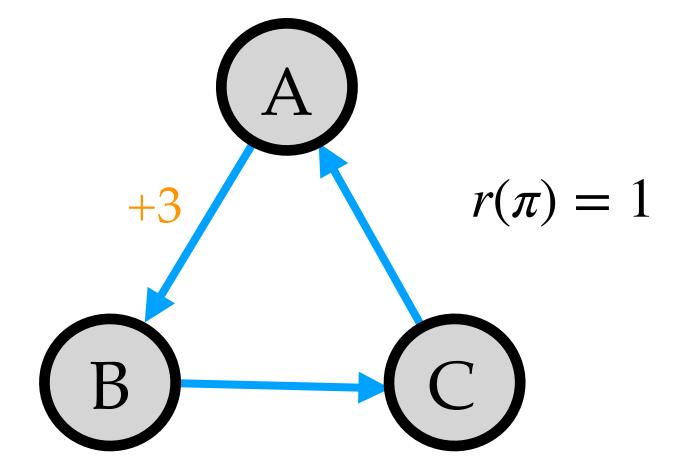
$$\gamma = 0.8 \qquad 5$$

$$\gamma = 0.9$$
 10

$$\gamma = 0.99 \quad 100$$

$$v_{\pi}^{\gamma}(s) = \frac{r(\pi)}{1 - \gamma} + \tilde{v}_{\pi}(s) + e_{\pi}^{\gamma}(s)$$

$$\tilde{v}_{\pi}^{\gamma}(s)$$



		s_A	s_B	s_C
Standard discounted values	$\gamma = 0.8$ $\gamma = 0.9$ $\gamma = 0.99$	6.15 11.07 101.01	3.93 8.97 98.99	4.92 9.96 99.99
Centered discounted values	$\gamma = 0.8$ $\gamma = 0.9$ $\gamma = 0.99$	1.15 1.07 1.01	-1.07 -1.03 -1.01	-0.08 -0.04 -0.01
Differential values		1	-1	0

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

On-policy

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

On-policy
$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

Off-policy

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

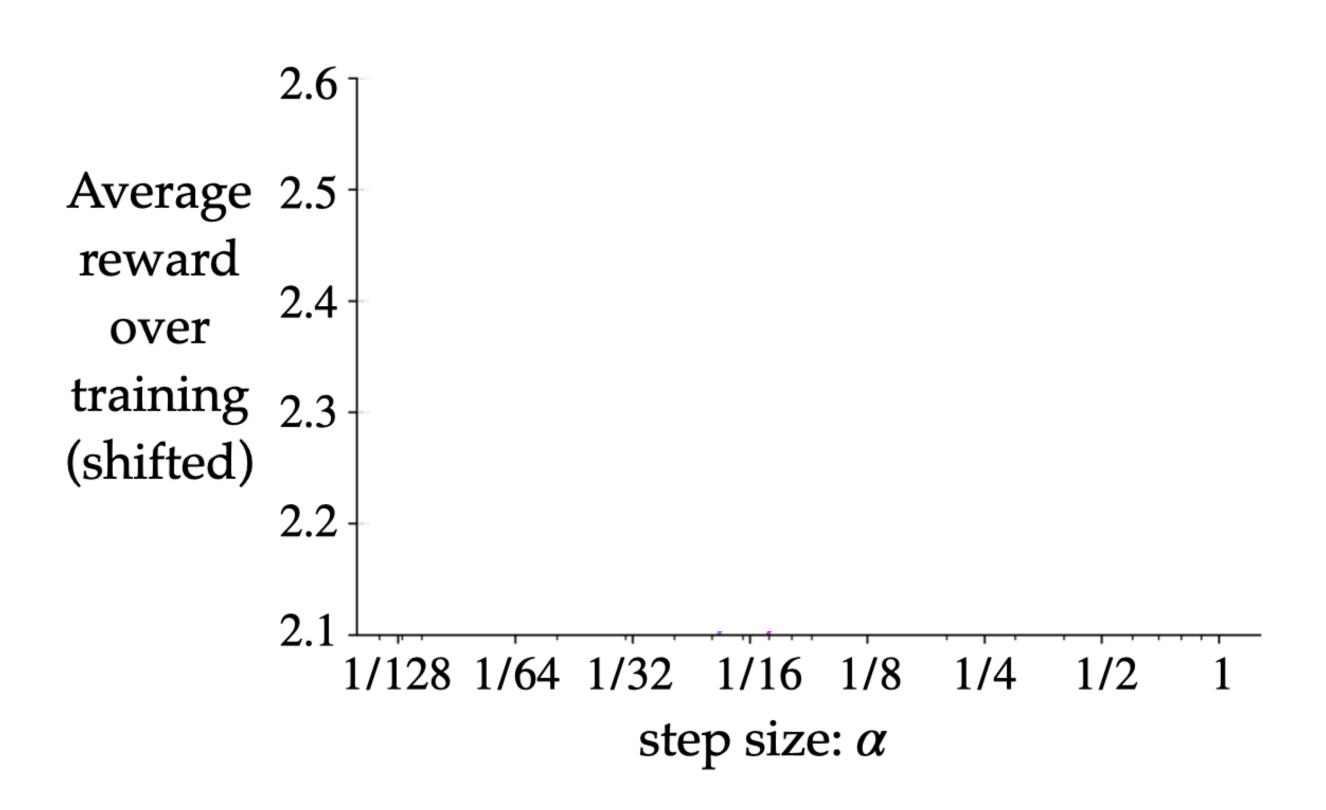
where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \gamma V_t(S_{t+1}) - V_t(S_t)$$

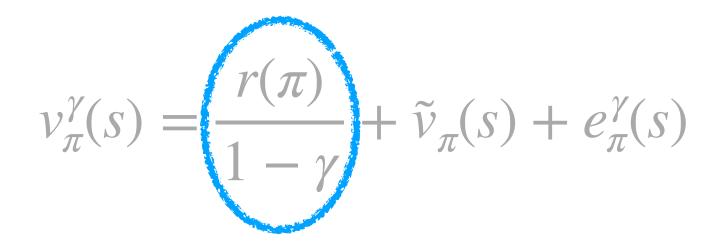
$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

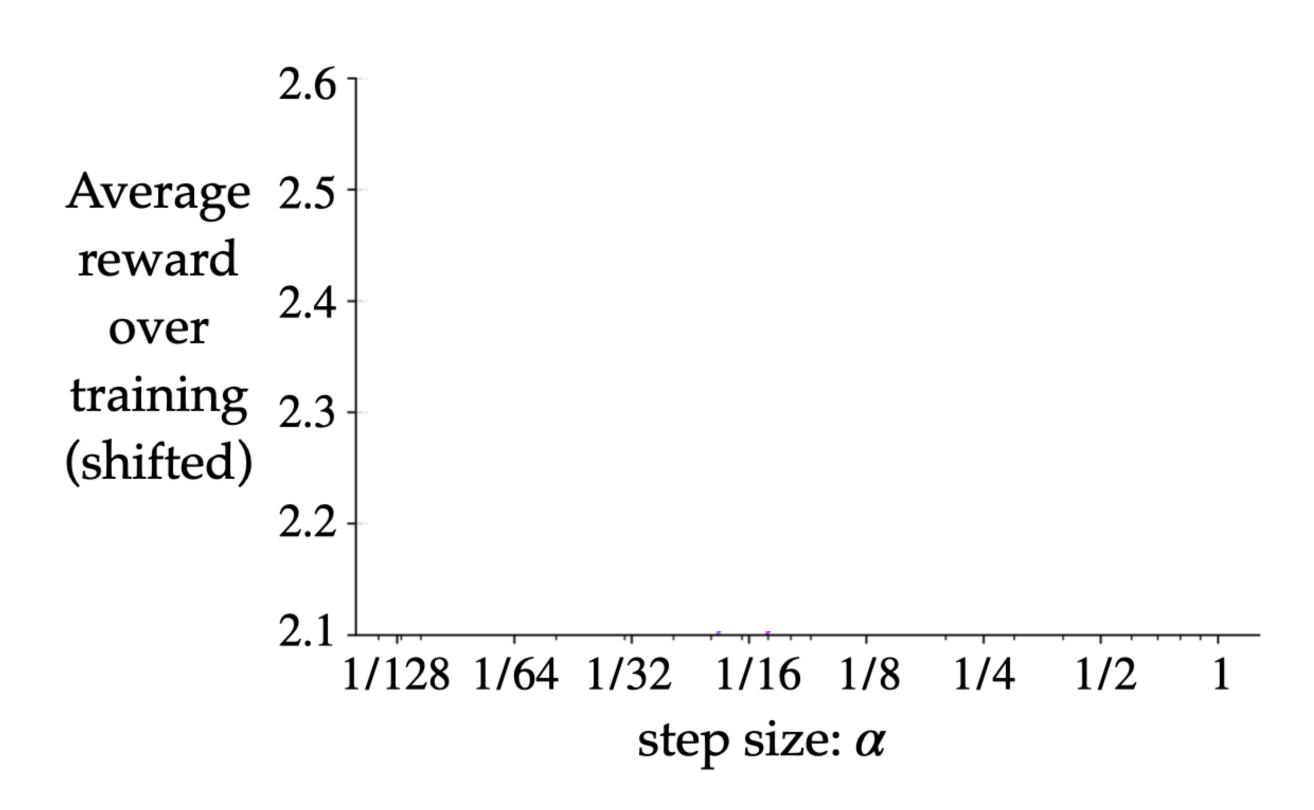
$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

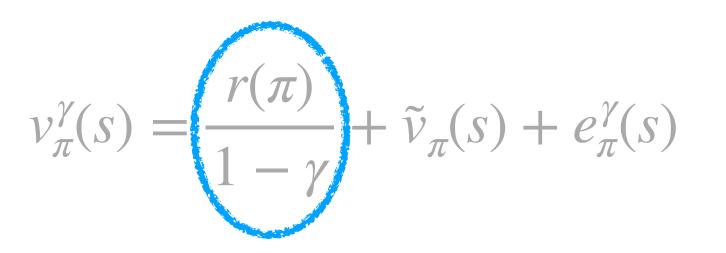
$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

where
$$\delta_t \doteq R_{t+1} - \bar{R}_t + \gamma V_t(S_{t+1}) - V_t(S_t)$$

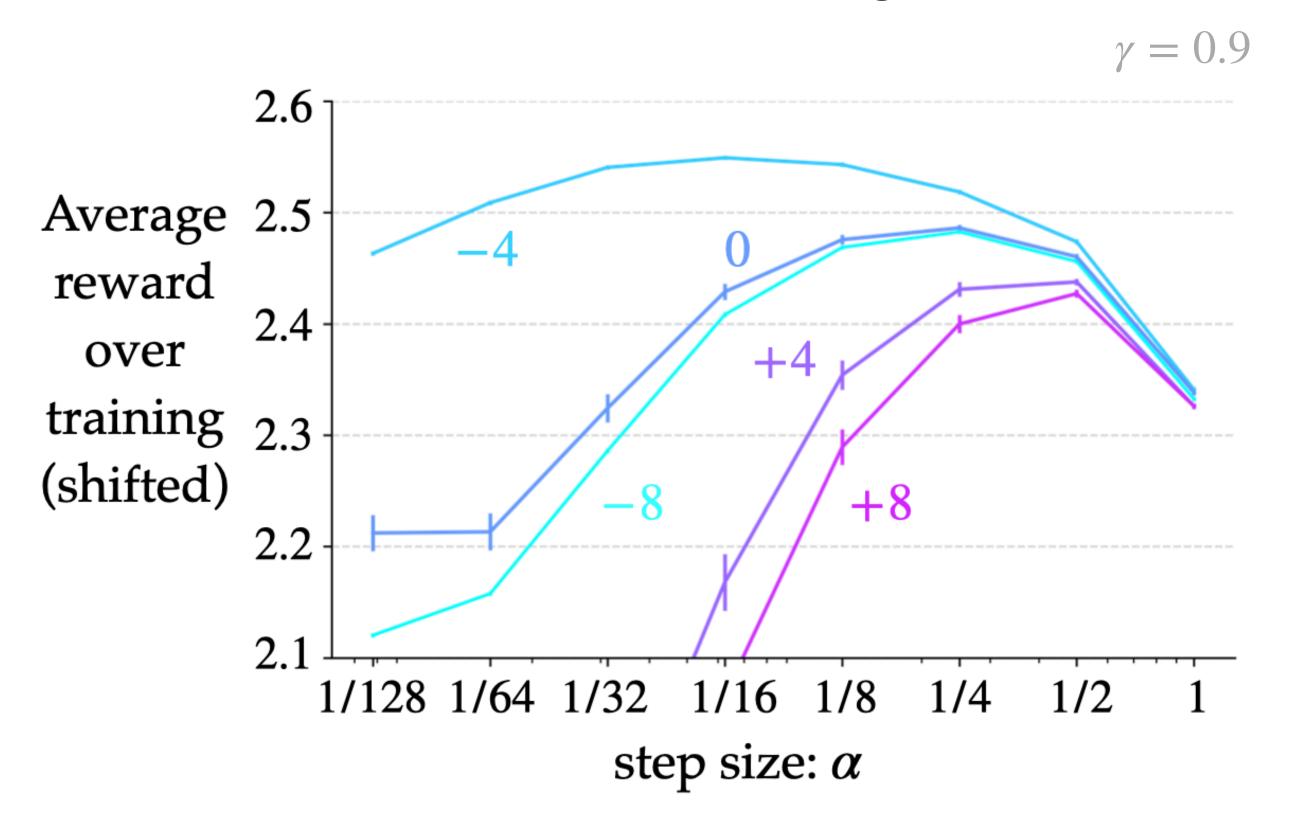


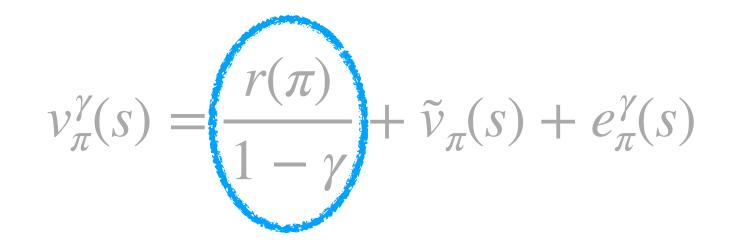






Q-learning

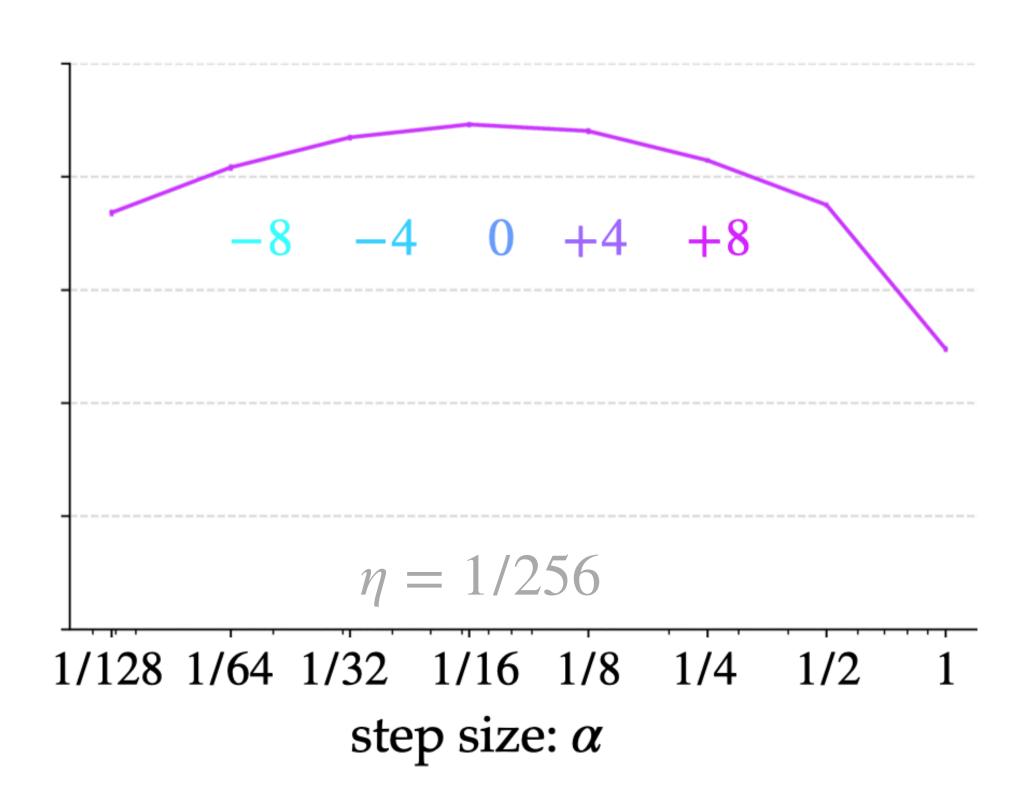


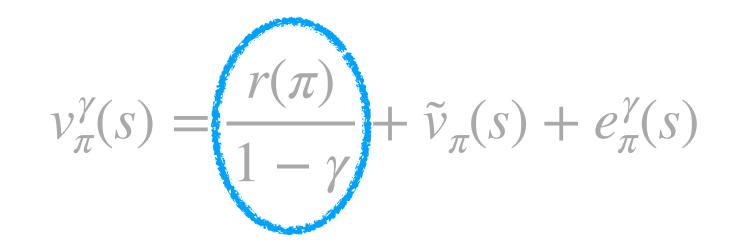


Q-learning

$\gamma = 0.9$ 2.6 Average 2.5 reward 2.4 over training 2.3 (shifted) +8 2. 1/128 1/64 1/32 1/16 1/8 step size: α

Q-learning with reward centering

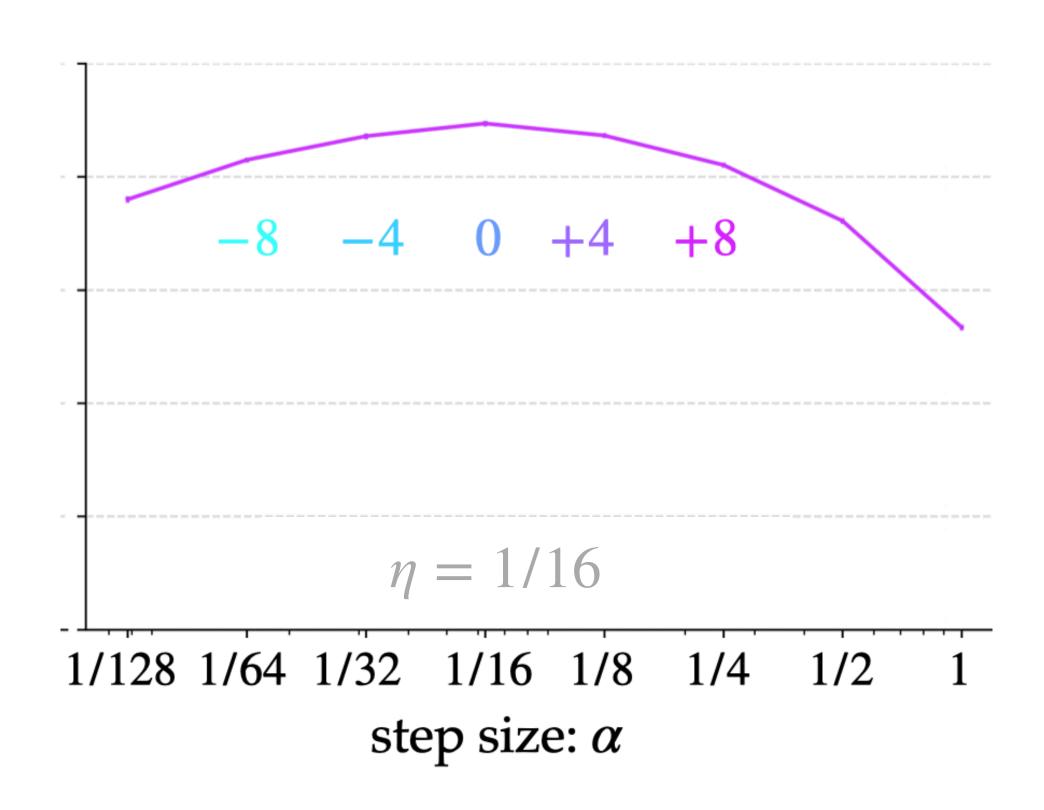


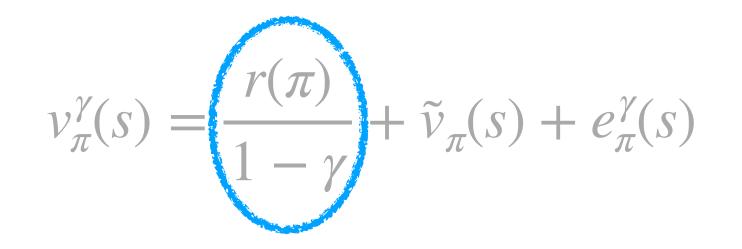


Q-learning

$\gamma = 0.9$ 2.6 Average 2.5 reward 2.4 over training 2.3 (shifted) +8 2. 1/128 1/64 1/32 1/16 1/8 step size: α

Q-learning with reward centering

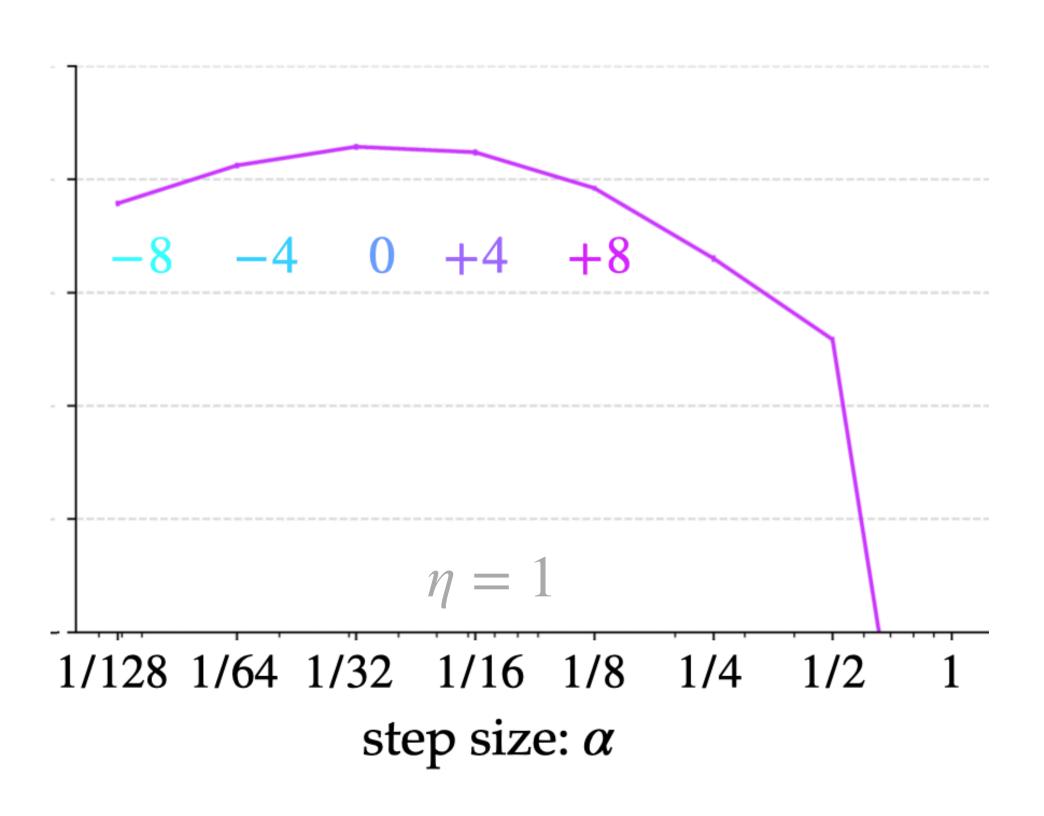




Q-learning

$\gamma = 0.9$ 2.6 Average 2.5 reward 2.4 over training 2.3 (shifted) +8 2. 1/128 1/64 1/32 1/16 1/8 step size: α

Q-learning with reward centering



Peward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.

- Provided Reward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Problems Reward centering can also make discounted methods robust to shifts in the problems' rewards.

- Peward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Reward centering can also make discounted methods robust to shifts in the problems' rewards.
- Both techniques of centering are quite effective; using the TD error is more appropriate for the off-policy setting.

- Peward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Problems Reward centering can also make discounted methods robust to shifts in the problems' rewards.
- Both techniques of centering are quite effective; using the TD error is more appropriate for the off-policy setting.

Every RL algorithm will benefit with reward centering!

- Peward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Reward centering can also make discounted methods robust to shifts in the problems' rewards.
- Both techniques of centering are quite effective; using the TD error is more appropriate for the off-policy setting.

Every RL algorithm will benefit with reward centering!

Analysis, more experiments, etc.:

Naik, Wan, Tomar, & Sutton. (2024). Reward Centering. Under review.

- > Reward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Reward centering can also make discounted methods robust to shifts in the problems' rewards.
- Both techniques of centering are quite effective; using the TD error is more appropriate for the off-policy setting.

Every RL algorithm will benefit with reward centering!

Analysis, more experiments, etc.:

Naik, Wan, Tomar, & Sutton. (2024). Reward Centering. Under review.

Additional non-stationarity; step-size adaptation would help!

- Reward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Reward centering can also make discounted methods robust to shifts in the problems' rewards.
- Both techniques of centering are quite effective; using the TD error is more appropriate for the off-policy setting.

Every RL algorithm will benefit with reward centering!

- Additional non-stationarity; step-size adaptation would help!
- Should be combined with techniques for reward scaling

Analysis, more experiments, etc.:

Naik, Wan, Tomar, & Sutton. (2024). Reward Centering. Under review.

- Peward centering can improve the performance of discounted methods for all discount factors, especially as $\gamma \to 1$.
- Reward centering can also make discounted methods robust to shifts in the problems' rewards.
- Both techniques of centering are quite effective; using the TD error is more appropriate for the off-policy setting.

Every RL algorithm will benefit with reward centering!

- Additional non-stationarity; step-size adaptation would help!
- Should be combined with techniques for reward scaling
- Unlocks algorithms in which the discount factor can be efficiently adapted over time

Analysis, more experiments, etc.:

Naik, Wan, Tomar, & Sutton. (2024). Reward Centering. Under review.

OUTLINE

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
 - Conclusions, limitations, and future work
 - Acknowledgments

OUTLINE

- Problem setting
- 1. One-step average-reward methods
- 2. Multi-step average-reward methods
- 3. An idea to improve discounted-reward methods
 - Conclusions, limitations, and future work
 - Acknowledgments

Contributions

Contributions

 one-step tabular average-reward learning algorithms for on- and off-policy prediction and control

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

Contributions Future Work

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

Future Work

 Extensive empirical evaluation of average-reward and discounted-reward methods

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

- Extensive empirical evaluation of average-reward and discounted-reward methods
- A suite of continuing problems

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

- Extensive empirical evaluation of average-reward and discounted-reward methods
- A suite of continuing problems
- Policy-based variants

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

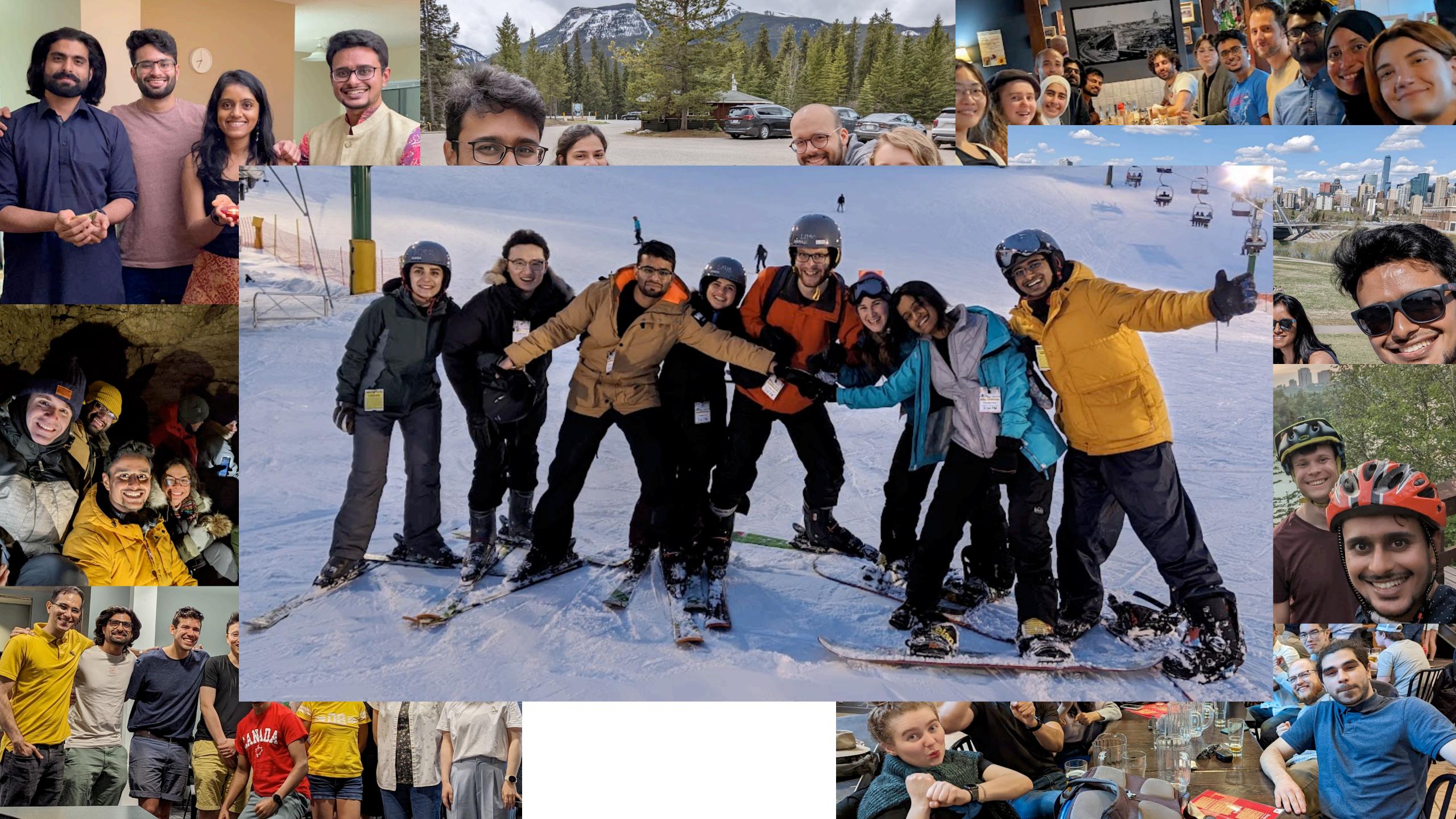
- Extensive empirical evaluation of average-reward and discounted-reward methods
- A suite of continuing problems
- Policy-based variants
- Model-based variants

Contributions

- one-step tabular average-reward learning algorithms for on- and off-policy prediction and control
- multi-step average-reward learning algorithms for on- and off-policy prediction using eligibility traces
- the reward-centering idea to improve discountedreward algorithms for continuing problems

"To develop simple and practical learning algorithms from first principles for long-lived agents"

- Extensive empirical evaluation of average-reward and discounted-reward methods
- A suite of continuing problems
- Policy-based variants
- Model-based variants
- Exploration techniques for continuing problems



THANK YOU

Questions?