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Motivation

My vision

Self-driving cars zipping through the streets :

ferrying commuters safely and reliably;
having record-low accident rates;
all connected with other vehicles, satellites;
eliminating the need for traffic signals and signs;
in which we can eat, sleep, spend time with our family...
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Motivation

Motivation

Reinforcement Learning (RL) has achieved success at
human-level or superhuman performance in :

full-information games - Chess, Go [1, 2]
control tasks - robotic navigation, helicopter-flying [3, 4]
partial-information games - ATARI, DoTA, Poker [5, 6]
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Motivation

Motivation

Ongoing efforts in extremely challenging risk-sensitive
applications like autonomous driving or robotic surgery
to achieve:
1 human-level (expert) performance in these tasks
2 with appropriate guarantees of safety.

Specific to autonomous driving:
Negotiating in the multi-agent game of traffic ...
to get from source to destination safely and reliably.
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Motivation

Problem Statement(s)

A three-pronged strategy :

1 Improving the reliability of the state-of-the-art
imitation learning algorithms when learning from
only a fixed set of expert trajectories for risk-sensitive
applications. [Risk-Averse Imitation Learning]

2 Setting up a simple framework for enabling
multi-agent research for autonomous driving, and
benchmarking multi-agent learning algorithms on
the HFO RoboSoccer simulator. [Multi-Agent Learning]

3 Mastering the hard, sparse-reward task of
RoboSoccer by learning a sequence of simpler sub-tasks
in a principled manner. [Curriculum Learning]
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Background

Reinforcement Learning

Discover the ‘right’ behaviour in the given context . . .
to achieve the maximum reward . . .

via trial-and-error.

Image credits : TheSchoolRun and projects.laas.fr
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Background

Reinforcement Learning

Mathematically, consider a Markov Decision Process (MDP)
M = (S,A,P,R, γ).

At each timestep t,

the agent receives a state st
(or observation ot) in a state space S ,

selects an action at from an action
space A following a policy π(at|st),

receives a scalar reward rt according
to the reward function R(s,a),

and transitions to the next state st+1

with the state transition probability
P(st+1|st,at)

where γ is the MDP’s discount factor
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Risk-Averse Imitation Learning

Background

Imitation Learning

The idea
Learns policies through imitation of an expert’s behavior
without the need of a handcrafted reward function. [7]
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Risk-Averse Imitation Learning

Background

Imitation Learning : Paradigm 1

Behavioural Cloning

Uses supervised learning to fit a policy function to the
state-action pairs from expert-demonstrated trajectories.

Notable applications:
ALVINN - the first self-driving car (1989) [8]
NVIDIA’s recent self-driving efforts [9]

Main drawback: Compounding errors [10]
Assume observations are i.i.d.; learns to fit single time-step
decisions.
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Risk-Averse Imitation Learning

Background

Imitation Learning : Paradigm 1

Figure: An illustration of the compounding error due to covariate
shift (adapted from Sergey Levine’s RL course slides).

Approaches like DAgger [11] ameliorate this problem,
but require querying of expert in training.

http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_2_behavior_cloning.pdf
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Risk-Averse Imitation Learning

Background

Imitation Learning : Paradigm 2

Apperenticeship Learning [12]

Attempts to uncover the underlying reward function (IRL),
then applies standard RL to learn a policy.

+ Does not suffer from issue of compounding error.
- Indirect; computationally expensive
- Not scalable to large domains. [13]
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Background

Imitation Learning : State-of-the-art

Generative Adversarial Imitation Learning (GAIL) [14]

GAIL uses the generative-adversarial framework to generate
state-action pairs similar to those generated by an ‘expert’.

Figure: The GAIL framework
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Risk-Averse Imitation Learning

Background

Imitation Learning : State-of-the-art

Generative Adversarial Imitation Learning (GAIL) [14]
Ho and Ermon, NIPS 2016

+ Does not suffer from issue of compounding error.
+ Scalable to large domains.
- But distributions of trajectory-costs are heavy-tailed.
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Risk-Averse Imitation Learning

Background

Imitation Learning : State-of-the-art

Figure: Histograms of the costs of 250 trajectories generated by the
expert and GAIL agents at high-dimensional continuous control tasks
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Risk-Averse Imitation Learning

Background

Risk-sensitivity

Two broad categories : [15]
1 constraining the agent to safe states during exploration.
2 modifying the optimality criterion of the agent to embed
a term for minimizing risk.

Studies on risk-minimization are rather scarce in the imitation
learning literature, and focus on average-case performance at
the center, overlooking tail-end events.
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Risk-Averse Imitation Learning

Methodology

Conditional-Value-at-Risk [16]

Figure: VaR0.95 and CVaR0.95 for a gaussian distribution

VaRα(Z) , min(z | P(Z ≤ z) ≥ α)

CVaRα(Z) , E [Z | Z ≥ VaRα(Z)]
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Risk-Averse Imitation Learning

Methodology

Objective

To find a policy π∗ (π : S ×A → [0, 1]) which minimize the
high-cost tail-end trajectories.

min
π,ν

max
D∈(0,1)S×A

{
EπE [log(1−D(s,a))]

+ Eπ[log(D(s,a))]− H(π)

+ λCVaR Hα(Rπ(ξ|c(D)), ν)
}
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Risk-Averse Imitation Learning

Methodology

Experiments

Figure: The continuous
control environments

Environment DimensionalityState Action
Reacher 11 2
Hopper 11 3
HalfCheetah 17 6
Walker 17 6
Humanoid 376 17

Table: Dimensionality of the environments
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Risk-Averse Imitation Learning

Results

Results

Table: Values of percentage relative tail risk measures and gains in
reliability on using RAIL over GAIL. RAIL shows a remarkable
improvement over GAIL in both the metrics.

Environment VaR0.9(A|E)(%) GR-VaR (%) CVaR0.9(A|E) (%) GR-CVaR (%)GAIL RAIL GAIL RAIL
Reacher -62.41 -23.81 38.61 -108.99 -48.42 60.57
Hopper -53.17 -0.23 52.94 -49.62 39.38 89.00
HalfCheetah -21.66 -8.20 13.46 -33.84 -12.24 21.60
Walker -1.64 0.03 1.66 45.39 70.52 25.13
Humanoid -73.16 -5.97 67.19 -71.71 1.07 72.78
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Conclusion

Conclusion

RAIL obtains a superior performance at all the metrics
across all the 5 continuous control tasks.
RAIL converges atleast as fast as GAIL, and at times, even
faster.
RAIL is also scalable to complex environments with large
state and action spaces.
RAIL works even in the absence of a heavy tail since
minimization of CVaR also leads to minimization of mean
and standard deviation. [16]

Risk-Averse Imitation Learning
Santara, A.*, Naik, A.*, Ravindran, B., and others.
To appear in the proceedings of AAMAS 2018; arxiv.org/abs/1707.06658

https://arxiv.org/abs/1707.06658
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Motivation

In the real world, learning often happens in groups
rather than individually, in silos.

Image credits : RealMadrid.com and FactorDaily

https://www.realmadrid.com/en
https://factordaily.com/multi-agent-driving-sim-madras/
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Multi-Agent RL

Related Work

Related Work

Classical approaches :
Independent Q-learning [17], Nash Q-learning [18],
WoLF [19], etc.

Recent (and deep) approaches :
MA-DQN [20], Deep Hysteretic Q-learning [21], etc.

Issues :
Work only on small, discrete domains.
Not scalable to high-dimensional,
continuous control tasks.
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Multi-Agent RL

Related Work

State-of-the-Art

Multi-Agent DDPG (MADDPG) [22]

DDPG algorithm extended for multiple agents.
Relatively new, does not seem scalable.

PSMADDPG [23] claims scalability.
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Multi-Agent RL

Methodology

RoboSoccer

Challenges

High-dimensional Spaces
Parameterized Action Space
Multi-agent Learning
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Multi-Agent RL

Methodology

Observation Space

Notable features:
Agent’s position, velocity,
orientation
Distances and angles to ball,
goal-posts, players, etc.

Total 58 continuous-valued features.
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Multi-Agent RL

Methodology

Action Space

Kick(power,direction)
Dash(power,direction)
Turn(direction)
Tackle(direction)

Total : 4 actions + 6 parameters
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Multi-Agent RL

Methodology

Reward Function

Components:
1 MoveToBall [r1(t)]
2 FirstBallTouch [r2(t)]
3 MoveToGoal [r3(t)]
4 ScoreGoal [r4(t)]

Total reward:

r(t) = r1(t) + r2(t) + 3r3(t) + 5r4(t)
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Multi-Agent RL

Methodology

Model

An actor-critic model

Courtesy [24]
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Digression : Paradigms for solving RL

1 Value-based : Solve for the optimal v∗

2 Policy-based : Solve for the optimal π∗

3 Actor-Critic : Solves for both.

Figure: Takes an action Figure: Evaluates the action
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Multi-Agent RL

Methodology

Model

An actor-critic model

Actor : 4 + 6 outputs

Action chosen :
max(Kick, Dash, Turn, Tackle)

Parameters used :
corresponding to chosen action

Critic : 4 + 6 gradients

Courtesy [24]
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Experiments

The following combination of scenarios were tested :
one or more agents
independent and shared network (lower) layers
independent and shared replay buffers
with and without a goalkeeper
an expert or a naive goalkeeper
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Multi-Agent RL

Results

Results

Table: Some interesting results corresponding to some of the
combinations of the aforementioned scenarios.

Goals
Scenario Trials # % Iterations AvgFrame/Goal

1v0 275896 234031 84.83 250000 126.4
2v0 (indp) 247900 178995 72.20 250000 116.9

2v0 (memory) 307341 232201 75.55 ∼300000 116.3
2v0 (layers) 241160 183751 76.19 250000 120
1v1 (expert) 646046 392 0.06 ∼650000 136.8
1v1 (goalie) 236821 116909 49.37 250000 130

1v1 (goalie; noFreeze) 227804 119070 52.27 250000 127.6
2v1 (ind) 300127 197 0.07 300000 135.7

2v1 (memory) 250000 72 0.029 250000 -
2v1 (memory, pass) 198039 68 0.03 300000 220
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Takeaways

Multi-agent learning is hard.
Problems of non-stationarity and scalability are real.
Reward-engineering is extremely hard to get to work in
complex environments.

And what about autonomous driving?
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Multi-Agent RL

MADRaS

Motivation

The issues with existing driving simulators :

Lack of multi-agent control :
innately support only ego-centric control, have
pre-programmed behaviors for the other agents.
Lack of customizability of non-ego-control cars :
difficulty in introducing agents with custom behaviors
restricts the diversity of real-world scenarios
that can be simulated.
Proprietary technology :
secrecy of players like Google and Uber add to the
inaccessibility of autonomous driving research for
researchers without (very) deep pockets.
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Multi-Agent RL

MADRaS

Multi-Agent DRiving Simulator

Figure: Screenshot of MADRaS’ interface



DRL : Reliability and Multi-Agent Environments 46 / 72

Multi-Agent RL

MADRaS

Multi-Agent DRiving Simulator

Encouraging response from the community
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Multi-Agent RL

MADRaS

Planned work

1 Benchmarking multi-agent RL algorithms :
MADDPG [22], PSMADDPG [23], SOM [25], DIAL and RAIL [26]

2 Creating a dataset of traffic scenarios :
the aim to create a plethora of plug-and-play scenarios
for ease of research

3 Simulation of classical multi-agent scenarios :
Platooning; Pooling knowledge, Leveraging intent, ...
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Curriculum Learning

Motivation

Curriculum Learning

Humans inherently break problems down to a sequence of
manageable stages and sub-goals that are of progressively
greater complexity.

Dual Degree ‘Curriculum’
Idea introduced in 1993 [27],
made popular 2009 onwards [28]
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Curriculum Learning

Motivation

Motivation

Hand-engineered reward functions are too hard to get to
work in real-world scenarios :

r(t) = r1(t) + r2(t) + 3r3(t) + 5r4(t)

For driving?

Instead, let the agent learn how important each task is, along
with learning the optimal policy for the same.
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Classical usage
multi-stage learning for language and vision tasks [28]

Task generation
from hand-coded [29] to learned tasks [30]

Task sequencing
manual ordering to automatic sequencing [31]
catastrophic forgetting of older tasks [32]

Task encoding
naïve one-hot to principled approaches [33]
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Curriculum Learning

Methodology

Task Generation

Domain knowledge is used to design to following sub-tasks in
order to teach the agent to score goals :

1 Go to ball - the basic skill of approaching the ball
2 Dribble to goal - requires knowledge of (1)
3 Shoot - attempting to score a goal
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Task Sequencing
A heuristic approach to cycle between the sub-tasks :

Algorithm 1 Sequential Ordering
1: procedure Learn
2: current task index i = EvaluateTasks()
3: while iter < maxIter do
4: PlayEpisode(Ti) . Play and learn on current task
5: if iter % 10000 == 0 then
6: i = EvaluateTasks() . Update the task to be evaluated
7:
8: function EvaluateTasks
9: for i ∈ 1 . . . |T| do . Follow the ordering of tasks
10: average return Ravgi = Evaluate(Ti)
11: if Ravgi < 0.8× Rmaxi then
12: return i . Task Ti needs more training
13: return |T|
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Methodology

Task Embeddings

T = Wembi

where vector i represents the one-hot encoding of the sub-task

1 State embedding - task embedding concatenated with
agent’s state representation vector

2 Weight embedding - task embedding vector interacts
multiplicatively with activations of agent’s network

o = Wdec(WT �Wench) + b
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Methodology

Task Embeddings

Courtesy [24]
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Figure: Performance on the three tasks of the two types of
embeddings of size 128, using the sequential ordering
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Curriculum Learning

Results

Results - Ablative Analysis

Importance of task embedding

Figure: Performance of the agent trained naïvely with no
embeddings versus the one trained with the weight embedding
architecture (with the sequential ordering and embedding size 128)
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Curriculum Learning

Results

Results - Ablative Analysis

Importance of task ordering

Figure: Performance of the agent trained with the sequential
ordering and the lack of it using a weight embedding of size 8
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Curriculum Learning

Results

Results - Additional Analysis

Size of embedding

Figure: Performance of the agent trained using different sizes of
embeddings of the weight embedding architecture - sizes 8 and 128
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Takeaways

Takeaways

1 Tasks embeddings indeed help in discerning between
different sub-tasks that have been designed to make the
target task easier

2 The order in which the sub-tasks are presented to the
agent is critical in enabling stable learning as well as
catastrophic forgetting of the tasks-at-hand

3 The weight embedding architecture is fairly robust to the
size of the embeddings used, with larger sizes encoding
more and sufficient information.
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Conclusions

Summary

1 Risk-Averse Imitation Learning - identified a drawback
with the existing SOTA algorithm for learning a behavioral
policy from a fixed set of expert trajectories, and
proposed a viable alternative for application in
risk-sensitive applications.

2 Multi-Agent Learning - developed the first open-source,
fully-controllable Multi-Agent DRiving Simulator, and
identified problems of non-stationarity and
reward-engineering in the multi-agent domain.

3 Curriculum Learning - broke down the sparse reward
goal-scoring task of RoboSoccer into smaller, individual
sub-tasks and demonstrated the importance of each
proposed module.
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Conclusions

Ultimate Goal

Revolutionizing the transportation industry by safely and
reliably deploying a homogeneous set of connected
self-driving vehicles on our roads.
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Self-driving cars zipping through the streets,

of India,

ferrying commuters from place-to-place
safely and reliably
having record-low accident rates
eliminating the need for traffic signals and signs
in which we can eat, sleep, spend time with our family
running on renewable sources of energy
available at the tap of an app.
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