
Deep Reinforcement Learning :

Reliability and Multi-Agent Environments

A Dual Degree Project Report

submitted by

ABHISHEK NAIK

under the guidance of

PROF. BALARAMAN RAVINDRAN

Department of Computer Science and Engineering
Indian Institute of Technology Madras

May 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Deep Reinforcement Learning : Reliability and

Multi-Agent Environments, submitted by Abhishek Naik, to the Indian Institute of

Technology Madras, for the award of the degree of Dual Degree (B.Tech + M.Tech),

is a bona fide record of the research work done by him under our supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. Balaraman Ravindran

Research Guide

Professor

Dept. of Computer Science & Engineering

IIT-Madras, 600036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

First of all, I would like to thank Professor Balaraman Ravindran, who has been a guid-

ing light for almost three years now. It was his unique teaching style and unparalleled

enthusiasm that got me hooked to Machine Learning and subsequently Reinforcement

Learning, which has now evolved into a career, starting with a PhD. He inspired me to

broaden my horizon and study topics which went beyond the syllabus 1, and his valuable

feedback and ideas have improved the quality of this thesis considerably.

Shout-out to my support cast - wingmates, close friends, family. Words aren’t

enough to express the gratitude I have towards them, for keeping me sane with all

the insane antics, stunts, conversations, in this particularly difficult year. In alphabetical

order - Monu, Motu, Serdaar, Stack, Ujjawal. If I could, I would relive all these five

years with you guys again. And Fahima, who made this past year all the more colorful

and stimulating, and gave me a reason to diligently finish my work early every day.

Literally none of this would have been possible without my pillars of support -

Akka, Amma, and Pappa. I shall forever be thankful for their unwavering faith and

unquestioning enthusiasm for every crazy endeavor I have ever pursued.

And last but not the least, I would like to thank the amazing set of collaborators

that I’ve had the good fortune to work with. In particular, Anirban, whose infectious

enthusiasm was refreshing amidst the year of toil it has been for us. Along with him,

sincere thanks to my peers in the TRL course, weekly RL meet-ups - who all enabled

invaluable breadths and depths of learning and thinking with the insightful discussions

and debates over screens, paper presentations, and biryanis. Thanks to all the fellow

lab-mates and TAs I’ve had, for making this year a memorable experience beyond the

walls of the lab.

1‘ancient’ papers from before the turn of the century

i

ABSTRACT

KEYWORDS: Reinforcement learning; Deep learning; Risk-averse learning;

Multi-agent learning; Curriculum learning

Reinforcement learning is a subset of machine learning algorithms concerned with

learning to perform sequential decision-making tasks in unknown environments in or-

der to maximize some cumulative reward. As the field of artificial intelligence evolves

to solve real-world problems of genuine interest to humans, specifically that of au-

tonomous driving, issues of safety and reliability of the people involved comes to

the fore. Furthermore, these environments are too complex for classical (and) hand-

designed solutions. We hypothesize that the renaissance of reinforcement learning tech-

niques with the recent advancements in deep learning hold the key towards making such

applications of Artificial General Intelligence a reality.

Towards this end, we adapt a three-pronged strategy - firstly, we illustrate the unreli-

ability of the state-of-the-art imitation learning algorithm and propose a new risk-averse

imitation learning framework, which empirically appears as a potent alternative for im-

proved reliability in risk-sensitive applications. Secondly, to address the deficiencies of

existing driving simulators in terms of independent control of multiple agents as well

as the extent of customizability of traffic, we develop the first open-source, multi-agent

driving simulator to serve as a quick-start prototyping platform for the reseach com-

munity. Finally, we observe the challenges of non-stationarity and hand-engineered

reward functions in the multi-agent domain of RoboSoccer, and move towards a cur-

riculum learning based approach of breaking the complex target task into simpler skills

that the agent leverages in order to master the final sparse-reward goal, for which we

successfully demonstrate a proof-of-concept methodology. We aim to consolidate these

individual modules together as viable steps towards achieving the ultimate goal of revo-

lutionizing the transportation industry by safely and reliably deploying a homogeneous

set of connected self-driving vehicles on our roads.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

Table of Contents iii

List of Tables vi

List of Figures viii

1 Introduction 1

1.1 Contributions . 2

1.2 Overview . 3

2 Background 5

2.1 Deep Reinforcement Learning . 5

2.2 Deep Q-Networks . 6

2.3 DDPG . 6

2.4 GAIL . 8

2.5 Risk-sensitivity . 10

2.6 Half Field Offense Simulator . 11

2.6.1 Environment . 11

2.6.2 State and Action spaces 11

2.7 Parameterized DDPG . 12

3 Risk-Averse Imitation Learning 14

3.1 Motivation . 14

3.2 Related work . 15

3.2.1 Imitation Learning . 16

3.2.2 Risk-Sensitivity . 18

3.3 Methodology . 18

iii

3.3.1 Derivation of gradients . 19

3.4 Experiments . 22

3.5 Results . 23

3.6 Discussion . 24

3.7 Conclusion and Future Work . 26

4 Multi-Agent Learning 27

4.1 Motivation . 27

4.2 Related work . 28

4.2.1 Classical approaches . 28

4.2.2 Recent (and deep) approaches 29

4.3 Methodology . 32

4.4 Experiments . 33

4.5 Results and discussion . 33

4.6 Development - MADRaS . 35

4.6.1 Motivation . 36

4.7 Future work . 37

5 Curriculum Learning 41

5.1 Motivation . 41

5.2 Related work . 42

5.2.1 Classical Usage . 42

5.2.2 Task Generation . 42

5.2.3 Task Sequencing . 43

5.2.4 Incorporating Active Feedback 43

5.3 Methodology . 44

5.3.1 Task Generation . 44

5.3.2 Task Sequencing . 44

5.3.3 Task Encoding . 46

5.4 Experiments . 49

5.4.1 Evaluation procedure . 49

5.4.2 Sanity check . 50

5.4.3 Soccer task . 51

iv

5.4.4 Ablative analysis . 53

5.5 Conclusions and Future Work . 56

6 Summary and Conclusions 59

6.1 The long-term goal . 60

LIST OF TABLES

3.1 Hyperparameters for the RAIL experiments on various continuous con-
trol tasks from OpenAI Gym. 22

3.2 Comparison of expert, GAIL, and RAIL in terms of the tail risk metrics
- V aR0.9 and CV aR0.9. All the scores are calculated on samples of
50 trajectories. With smaller values of V aR and CV aR, RAIL outper-
forms GAIL in all the 5 continuous control tasks and also outperforms
the expert in some cases. 23

3.3 Values of percentage relative tail risk measures and gains in reliability
on using RAIL over GAIL for the different continuous control tasks.
RAIL shows a remarkable improvement over GAIL in both the metrics. 24

4.1 Some interesting results showing the percentage of trials ending in a
goal being scored along with the average number of frames taken per
goal. The scenarios are described in the accompanying text. 34

vi

LIST OF FIGURES

2.1 The actor-critic architecture (Sutton and Barto, 1998). In case of action-
value functions, the activations to from the actor to the critic and gradi-
ents flow backwards from the critic to the actor. The gradients coming
from the critic indicate directions of improvement in the continuous
action space and are used to train the actor network without explicit
targets. 7

2.2 V aR0.95 and CV aR0.95 for a normal distribution. 10

2.3 HFO’s ego-centric state representation includes distances to various ob-
jects and points of interest on the field. 12

3.1 Histograms of the costs of 250 trajectories generated by the expert and
GAIL agents at high-dimensional continuous control tasks, Hopper and
Humanoid, from OpenAI Gym. The inset diagrams show zoomed-in
views of the tails of these distributions (the region beyond 2σ of the
mean). We observe that the GAIL agents produce tails heavier than
the expert, indicating that GAIL is more prone to generating high-cost
trajectories. 15

3.2 An illustration of the compounding error due to covariate shift (adapted
from Sergey Levine’s IL slides). As the learning agent deviates from the
expected trajectory due to small errors, since it hasn’t seen expert data in
these erroneous zones, it makes even more errors, thereby compounding
the deviation in trajectory. 16

3.3 Convergence of mean trajectory-cost during training. The faded curves
corresponds to the original value of mean trajectory-cost which varies
highly between successive iterations. The data is smoothened with a
moving average filter of window size 21 to demonstrate the prevalent
behavior and plotted with solid curves. RAIL converges almost as fast
as GAIL at all the five continuous-control tasks, and at times, even
faster. 25

3.4 Histogram of costs of 250 trajectories generated by a GAIL-learned
policy for Reacher-v1. The distribution shows no heavy tail. From
Table 3.2 and Figure 3.3, we observe that RAIL performs as well as
GAIL even in cases where the distribution of trajectory costs is not
heavy-tailed. 26

4.1 Model architecture (adapted from Hausknecht and Stone (2016)) : an
actor-critic model wherein in every timestep, the actor takes the state
features as input and outputs the four discrete actions and six associated
parameters in unison, which the critic then takes as input along with the
state features to compute Q-values of. 32

vii

http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_2_behavior_cloning.pdf

4.2 MADRaS in action. The figure shows two controllable agents (blue-
green) in the foreground, along with other custom traffic cars. The two
terminal windows are logging the progress of both the agents simulta-
neously. The tracks and the extent and kinds of sensory information
logged are customizable. 37

5.1 The task embedding architectures (courtesy Hausknecht (2016)). The
State Embedding architecture simply has the task embedding concate-
nated into the feature state representation. On the other hand, the Weight
Embedding architecture has the activations of the task embedding vec-
tor multiplicatively interact with the activations of the agent’s second-
to-last layer of the network. 47

5.2 Comparison of performance of the task embeddings on the two simple
and complementary tasks. When no embeddings are used, the agent
cannot discern between the two tasks and ends of oscillating between
optimizing for one at the cost of the other. In contrast, both the tasks
are quickly learned using the state and weight embeddings (of size 32). 51

5.3 The sequential curriculum ordering is used for generating both the per-
formance curves. An embedding of size 128 is used for both state and
weight embeddings. The weight embedding architecture seems to help
the agent in learning a good control policy for all the three tasks, as
opposed to the state embedding architecture, which fails to learn on the
third and main Soccer task altogether. 53

5.4 Comparison of performance of the agent trained naïvely with no em-
beddings versus the one trained with the weight embedding architecture
(with the sequential ordering and embedding size 128). As expected,
the agent fails to learn a stable control policy for all the three tasks
when no embeddings are used. 54

5.5 Comparison of performance with the sequential ordering and the lack
of it for the different types of embeddings. The agent fails to demon-
strate stable learning on all the three tasks when they are presented in
a random order, while catastrophically forgetting the older tasks. The
weight embedding has size 8. Please refer to the main text for a detailed
discussion. 55

5.6 Comparison of performance with different sizes of embeddings. The
weight embedding architecture is seen to show a decent performance
across the three tasks for both sizes of embeddings, while the state em-
beddings fail completely on the third task. 56

viii

CHAPTER 1

Introduction

One of the primary driving forces of artificial intelligence is creating what is called as

Artificial General Intelligence (AGI), which entails ideal learning agents that are ca-

pable of learning in a diversity of situations and environments throughout their life,

without requiring extensive redesign for every new problem that they encounters. Such

AI systems encompass a broad range of physical and software-based systems - ranging

from robots that sense, interact, and react to the world around them (autonomous vehi-

cles, for instance), to behind-the-scenes algorithms which interact with users to showing

the right advertisements and product recommendations.

One such principled mathematical framework for trial-and-error, experience-driven

learning is that of Reinforcement Learning (RL), which is a term borrowed from animal

learning literature by Minsky (1954). RL intuitively involves an agent interacting with

the environment, learning an optimal policy by trail and error for sequential decision

making problems in a wide range of fields - in both natural and social sciences (Sutton

and Barto, 1998). After the works of Barto et al. (1983) and Watkins (1989), the field

really took off.

Though RL has had plenty of success stories in the past - from the champion

backgammon player (Tesauro, 1995) to autonomous acrobatic helicopter-flying (Ng

et al., 2006), most of the classical approaches lacked scalablity and were inherently lim-

ited to fairly low-dimensional problems. The integration of reinforcement learning and

neural networks has a long history, and the recent rise of Deep Learning (DL) (LeCun

et al., 2015), thanks to powerful representation learning and function approximation

properties of deep neural networks - coupled with big data, powerful computational re-

sources, new algorithmic techniques, mature software packages and architectures - has

been critical in the renaissance of RL.

In the past few years, deep neural networks have shown strong performance on a

variety of supervised learning tasks, and are now considered state-of-the-art general-

purpose function approximators for the tasks of image recognition (Simonyan and Zis-

serman, 2015), text generation (Graves, 2013), speech recognition (Hinton et al., 2012),

etc. Such recent advances in DL like that of Convolutional Neural Networks (CNNs)

(Krizhevsky et al., 2012) have enabled RL agents see, and Long Short-Term Mem-

ory Units (LSTMs) (Hochreiter and Schmidhuber, 1997) have enabled RL agents to

remember the important events in the past by aggregating their observations over time.

The field of Deep Reinforcement Learning (DRL) exploded with the Mnih et al.

(2015)’s demonstration of super-human performance across a variety of different Atari

2600 video games, and a breakaway world champion of Go by Silver et al. (2016), a

game which has long been considered a holy grail for artificial intelligence scientists.

This marriage of deep learning and reinforcement learning techniques have made it

possible for researchers to purdue increasingly complex, sophisticated, and ambitious

goals, avenues which were prohibitive not a very long time ago - in terms of memory,

computational, and sample complexity.

1.1 Contributions

One such ambitious goal is that of autonomous driving. It is innately exciting to envi-

sion a future with self-driving cars whipping through the streets, running on renewable

energy sources, ferrying commuters from place-to-place safely and reliably - all with

a tap of an app. Despite the driving acumen demonstrated by pioneers like Waymo

and Tesla, plenty of challenges of intricate complexity remain - from reliably detecting

obstacles and predicting their trajectories to understanding surrounding cars’ and pedes-

trians’ intents for planning moves into the future - all with a near-perfect accuracy, in

real-time. For such applications of Artificial General Intelligence, we strongly believe

RL is a key ingredient.

Towards making this exciting dream a reality, we break down this daunting task

into practical sub-problems.1 We make the following contributions within this three-

pronged strategy :

1. Risk-Averse Imitation Learning - Safety is the first and foremost aspect of au-

tonomous driving cars. Since even a single mistake in a risk-sensitive application

1An astute reader will realize the pun shortly

2

like autonomous driving puts lives at stake, we propose a risk-averse imitation

learning framework (christened RAIL), which improves the reliability of imi-

tation learning algorithms for deployment in risk-sensitive applications like au-

tonomous driving or robotic surgery. Complete details of RAIL are presented in

Chapter 3.

2. Multi-Agent Reinforcement Learning - Negotiating in traffic to move from one

place to another safely and reliably involves interactions with a plethora of en-

tities. Towards this end, we perform a series of experiments in the inherently

multi-agent setting of RoboSoccer, specifically demonstrating how parameter and

memory-sharing architectures improve learning. And since no multi-agent driv-

ing simulator is available freely for research purposes, we develop our own, co-

denamed MADRaS. Chapter 4 provides details on both these aspects.

3. Curriculum Learning in RoboSoccer - Finally, inspired from the education sys-

tem in place worldwide, we experiment with breaking down the sparse-reward

task of RoboSoccer into a curriculum of subtasks, learning which would ‘help’

with the harder target task. Tasks are presented to the agent using specialized em-

beddings. We believe that such an approach is important for any such humongu-

ously complicated and intricate tasks. More details are presented in Chapter 5.

1.2 Overview

The remainder of this thesis is organized as follows :

• Chapter 2 presents the background necessary for understanding the research con-

tributions of this thesis. In specific, a terse introduction to deep reinforcement

learning and risk-sensitivity is presented, followed by specific algorithms like pa-

rameterized DDPG and GAIL, which form the basis of the learning agents in later

chapters. It also introduces HFO, the simulator used for experiments in Chapters

4 and 5.2

2The choice of HFO RoboSoccer as a simulator was mainly governed by the fact that it is one of
the most popular and well-maintained multi-agent environments openly available. Also, watching and
playing football (yes, ‘football’) happen to be two of my favourite hobbies.

3

• Chapter 3 presents the first technical contribution, which is a framework for mak-

ing imitation learning algorithms more reliable for deployment in risk-sensitive

applications. It outlines the reliability issues with the existing state-of-the-art, and

demonstrates how those are addressed.

• Chapter 4 presents the motivation and need for using multi-agent RL, and presents

experimental results of a set of agents sharing knowledge while trying to score

goals against a goalkeeper. It also details the development and features of MADRaS,

which is the first open-source fully-controllable multi-agent driving simulator, to

the best of our knowledge.

• Chapter 5 demonstrates the efficacy of a curriculum learning approach for de-

composing complex tasks with sparse rewards into sequences of easier tasks. It

further underlines the importance of each component - the type of embedding, its

size, as well as the ordering in which the sub-tasks are presented to the learning

agents.

4

CHAPTER 2

Background

Let us consider a Markov Decision Process (MDP),M = (S,A,P ,R, γ). A reinforce-

ment learning (RL) agent interacts with an environment over time. At each time step

t, the agent receives a state st in a state space S and selects an action at from an ac-

tion space A, following a policy π(at|st), which is the agent’s behavior, i.e., a mapping

from state st to actions at, receives a scalar reward rt, and transitions to the next state

st+1, according to the environment dynamics, or model, for reward function R(s, a)

and state transition probability P(st+1|st, at) respectively. In an episodic problem, this

process continues until the agent reaches a terminal state and then it restarts. The re-

turn Rt =
∑∞

k=0 γ
krt+k is the discounted, accumulated reward with the discount factor

γ ∈ (0, 1]. The objective of the agent is to maximize the expectation of the return from

each state.

Reinforcement learning finds a policy which decides which is the best action to

take in every possible state of the environment, with the objective of maximizing the

agent’s accumulated long term reward. The agent learns tabula rasa, which means it has

no background about the dynamics of the environment or the structure of the reward,

which makes the problem even more challenging. Q-learning is one of the the most

popular learning algorithms applied in this context (Watkins, 1989).

2.1 Deep Reinforcement Learning

Reinforcement Learning becomes Deep Reinforcement Learning (DRL) when deep

neural networks are used to approximate any of the following components of RL :

the value function v(s|θ) or q(s, a|θ), the policy π(a|s; θ), or the model (state transi-

tion function and reward function), where θ represents the parameterization using deep

neural networks. If tile coding, decision trees, and so on are used as the function ap-

proximators, what we have is “shallow" RL. So the choice of function approximator

is the most prominent difference between “shallow" and “deep" RL. When DRL in-

gredients like stochastic gradient descent (SGD) and off-policy function approximation

are put together, that is a recipe for instability and divergence (Tsitsiklis and Van Roy,

1997). It was only recently that Google DeepMind came up techniques to get DRL to

work using Deep Q-Networks (Mnih et al., 2015) to not only stabilize the learning, but

also achieve outstanding results!

2.2 Deep Q-Networks

Mnih et al. (2015) kickstarted the Deep Reinforcement Learning gold-rush by introduc-

ing Deep Q-Networks to approximate these Q-value functions. Leveraging the powerful

feature representation of convolutional neural networks (CNNs), the Deep Q-Networks

obtained state-of-the-art results in the complex environments of ATARI games. What

caught the world’s fancy was that this agents achieved superhuman performance on a

wide range of the ATARI games using only raw screen-pixels and the reward score.

2.3 DDPG

Several variants of DQN have been proposed - from Double Q-learning to get over the

over-estimation bias of DQNs () to Deep Recurrent Q-Network (DRQNs) to address

issues of limited memory and partial observability (). These networks work well in

continuous state spaces but do not function in continuous action spaces because the

output nodes of the network, while continuous, are trained to output Q-Value estimates

rather than continuous actions.

Enter the Actor-Critic framework, which decouples the action selection from the

value estimation (). Represented using two deep neural networks, the actor network

outputs continuous actions while the critic estimates the values of these actions. The

actor network µ, parameterized by θµ, takes as input a state s and outputs a continuous

action a. The critic network Q, parameterized by θQ, takes as input a state s and action

a and outputs a scalar Q-Value Q(s, a). The actor is trained to maximize the critic’s

estimated Q-values by back-propagating through both networks.

6

Figure 2.1: The actor-critic architecture (Sutton and Barto, 1998). In case of action-
value functions, the activations to from the actor to the critic and gradients
flow backwards from the critic to the actor. The gradients coming from the
critic indicate directions of improvement in the continuous action space and
are used to train the actor network without explicit targets.

The Actor-Critic framework actually builds on the REINFORCE algorithm (Williams,

1992) with baseline, which has yields the following update for a generic stochastic gra-

dient ascent algorithm :

θt+1 = θt + α
(
Gt − b(St)

)∇π(At|St, θt)
π(At|St, θt)

(2.1)

where Gt is the return, b(St) is any arbitrary baseline, and θ is the parameterization of

the policy.

Using the state-value function for bootstrapping (updating the value estimate for a

state from the estimated values of subsequent states) and not just as a baseline makes

this an actor-critic method. Updates to the critic network are computed by minimizing

a loss function that comes from the standard temporal difference update, and that to

actor network computed using the REINFORCE with baseline update. W.r.t. the loss

function L for the critic and performance function J for the actor, the gradients are

given by :

∇θQL(θQ) =
(
r + γmax

a′
Q̂(s′, a′|θQ)− Q̂(s, a|θQ)

)
∇Q̂(s, a|θQ) (2.2)

∇θµJ(θµ) =
(
r + γmax

a′
Q̂(s′, a′|θQ)− Q̂(s, a|θQ)

)
∇ lnπ(a|s, θµ) (2.3)

7

Now, the next challenge faced by the RL community was that of figuring out how to

deal with continuous action spaces, since most interesting problems in the real world, in

robotic control, etc., fall into this category. So when extending actor-critic to continuous

action spaces, since maximizing over next-state actions a′ in continuous action spaces

is intractable, we output the next-state action a′ = µ(s′|θµ) from the actor network.

Silver et al. (2014) came up with the Deterministic Policy Gradient theorem, according

to which the gradient of the performance objective J of the deterministic policy µ in

the continuous action space w.r.t. policy parameters θµ is given by :

∇θµJ(θµ) = Eµ[∇aQ(s, a|θQ)|a=µ(s|θµ)∇θµµ(s|θµ)] (2.4)

which simply comes from a chain-rule expansion of∇θµQ(s, µ(s|θµ)|θQ).

Putting this together, the gradients for the critic and the actor in the Deep Deterministic

Policy Gradient (DDPG) setting (Lillicrap et al., 2016) are given by :

∇θQL(θQ) =
(
r + γQ̂(s′, µ(s′|θµ)|θQ)− Q̂(s, a|θQ)

)
∇Q̂(s, a|θQ) (2.5)

∇θµJ(θµ) = ∇aQ̂(s, a|θQ)|a=µ(s|θµ)∇θµµ(s|θµ) (2.6)

2.4 GAIL

Let ξ = (s0, a0, s1, . . . , sLξ) denote a trajectory of length Lξ, obtained by following a

policy π. The expectation of a function f(·, ·) defined on S ×A with respect to a policy

π is defined as follows:

Eπ[f(s, a)] , Eξ∼π

Lξ−1∑
t=0

γtf(st, at)

 (2.7)

Apprenticeship learning algorithms (Abbeel and Ng, 2004) first estimate the ex-

perts’ reward function using IRL and then find the optimal policy for the recovered

reward function using RL. Mathematically, this problem can be described as:

RL ◦ IRL(πE) = argmin
π∈Π

max
c∈C

Eπ[c(s, a)]− EπE [c(s, a)]−H(π) (2.8)

8

where, πE denotes the expert-policy. c(·, ·) denotes the cost function. Π and C denote

the hypothesis classes for policy and cost functions. H(π) denotes entropy of policy

π. The term −H(π) provides causal-entropy regularization (Ziebart et al., 2008) which

helps in making the policy optimization algorithm unbiased to factors other than the

expected reward.

Ho and Ermon (2016) proposed Generative Adversarial Imitation Learning (GAIL)

which packs the two step process ofRL◦IRLψ(πE) into a single optimization problem

with special considerations for scalability in large environments. The name is due to

the fact that this objective function can be optimized using the Generative Adversarial

Network (GAN) framework (Goodfellow et al., 2014). The objective function of GAIL

is as follows :

argmin
π∈Π

max
D∈(0,1)S×A

Eπ[log(D(s, a))] + EπE [log(1−D(s, a))]−H(π) (2.9)

Here, the agent’s policy, π, acts as a generator of state-action pairs. D is a discrimina-

tive binary classifier of the form D : S × A → (0, 1), known as discriminator, which

given a state-action pair (s, a), predicts the likelihood of it being generated by the gen-

erator. A two-player adversarial game is started, wherein the generator tries to generate

(s, a) pairs that closely match the expert, while the discriminator tries to correctly clas-

sify the (s, a) pairs of the expert and the agent. At convergence, the agent’s actions

resemble those of the expert in any given state.

The generator and the discriminator are assigned parameterized models πθ and Dw
respectively. The training algorithm alternates between a gradient ascent step with re-

spect to the discriminator parameters, w, and a policy-gradient descent step with respect

to the generator parameters, θ. Both the generator and the discriminator are modeled

with multi-layer perceptrons (neural networks with fully-connected layers).

9

2.5 Risk-sensitivity

Conditional-Value-at-Risk (CV aR) (Rockafellar and Uryasev, 2000) is the most con-

servative measure of tail risk (Dalleh, 2011) and unlike other measures like Variance

and Value at Risk (V aR), it can be applied when the distribution of returns is not nor-

mal. Let Z be a random variable. Let α ∈ [0, 1] denote a probability value.

Definition 1. The Value-at-Risk of Z with respect to confidence level α, denoted by

V aRα(Z), is defined as the minimum value z ∈ R such that with probability α, Z will

not exceed z.

V aRα(Z) = min(z | P (Z ≤ z) ≥ α) (2.10)

Definition 2. The Conditional-Value-at-Risk of Z with respect to confidence level α,

denoted byCV aRα(Z), is defined as the conditional expectation of losses above V aRα(Z):

CV aRα(Z) = E [Z | Z ≥ V aRα(Z)] = min
ν∈R

Hα(Z, ν) (2.11)

where Hα(Z, ν) is given by:

Hα(Z, ν) , {ν +
1

1− α
E
[
(Z − ν)+

]
}; (x)+ = max(x, 0) (2.12)

Figure 2.2: V aR0.95 and CV aR0.95 for a normal distribution.

10

2.6 Half Field Offense Simulator

The Half Field Offense (HFO) domain is subset of the full-fledged international robot

soccer competition RoboCup, which works with an abstraction of soccer wherein the

players, the ball, and the field are all 2-dimensional objects. HFO abstracts away the

difficulties of full RoboCup and exposes the experimenter only to core decision-making

logic, and to focus on the most challenging part of a RoboCup 2D game, which is

scoring and defending goals (Hausknecht et al., 2016).

2.6.1 Environment

HFO is naturally characterized as an episodic multi-agent POMDP because a) it has

well-defined episodes which culminate in either a goal being scored or the ball leaving

the play area, b) each agent receives its own state sensations and must independently

select its own actions in order to achieve the cooperative and competing objective of

scoring and defending goals, and c) and every agent receives only ego-centric features

and not the complete game state as input. At the beginning of each episode, the agent

and ball are positioned randomly on the offensive half of the field. The episode ends

when a goal is scored, the ball leaves the field, or 500 timesteps pass.

2.6.2 State and Action spaces

The state space for each agent has 58 ego-centric features, Some of the most relevant

ones are : the agent’s position and velocity; distances to the ball, goal, other players; etc.

A complete list of state features with additional details can be found in the manual at

https://github.com/mhauskn/HFO/blob/master/doc/manual.pdf

HFO features a high-level parameterized action space :

1. Dash(power, direction): Moves in the indicated direction with the given scalar

power. Movement is faster forward than sideways or backwards.

2. Kick(power, direction): Kicks the ball in the indicated direction with the given

scalar power.

11

https://github.com/mhauskn/HFO/blob/master/doc/manual.pdf

Figure 2.3: HFO’s ego-centric state representation includes distances to various objects
and points of interest on the field.

3. Turn(direction): Turns to indicated direction.

4. Tackle(direction): Contests the ball by moving in the indicated direction. This

action is only useful when playing against an opponent.

wherein the range of the scalar power and direction is [0, 100] and [−180, 180] degrees

respectively.

2.7 Parameterized DDPG

Hausknecht and Stone (2016) extend the the DPPG algorithm to parameterized, contin-

uous, bounded action spaces by bounding the action space gradients. In specific, apply-

ing the notation in Masson et al. (2016) to parameterized action space as defined in the

section above (2.6.2), we have A = (Dash, pdash
1 , pdash

2)∪ (Turn, pturn
3)∪ (Tackle, ptackle

4)∪

(Kick, pkick
5 , pkick

6). The actor network factors the action space into one output layer for

discrete actions (Dash,Turn,Tackle,Kick) and another for all six continuous parame-

ters (pdash
1 , pdash

2 , pturn
3 , ptackle

4 , pkick
5 , pkick

6).

The deterministic action selection in this parameterized action space proceeds as fol-

lows: At each timestep, the actor network outputs values for all the ten parameters - the

four discrete actions and the associated six continuous parameters. The discrete action

is chosen to be the maximally valued output a = max(Dash,Turn,Tackle,Kick) and

paired with the associated parameters from the parameter output layer (a, pa1, . . . , p
a
ma).

In this way, the actor network chooses the action to be executed along with its associated

parameters.

12

While training, without an indication as to which discrete action and the associated

parameters were chosen, the critic network receives as input all the ten outputs of the

actor network - all four discrete actions and all six action parameters. Similarly, the

critic provides gradients for all the ten parameters to the actor for updating.

Finally, the exploration is performed using the standard ε-greedy method of picking

between the four discrete actions. The associated parameters are sampled from uniform

distributions of their ranges. Notably, the acclaimed Ornstein-Uhlenbeck exploration

process (Lillicrap et al., 2016) is not used.

With the above background, we are ready to present the our contributions in this thesis.

13

CHAPTER 3

Risk-Averse Imitation Learning

3.1 Motivation

The recently proposed Generative Adversarial Imitation Learning (GAIL) algorithm

(Ho and Ermon (2016)) presents a novel mathematical framework in which the agent

learns to act by directly extracting a policy from expert-demonstrated trajectories, as if it

were obtained by RL following IRL. The authors show that unlike Behavioral Cloning,

this method is not prone to the issue of compounding error and it is also scalable to

large environments. Currently, GAIL provides state-of-the-art performance at several

benchmark control tasks, including those in Table 3.1.

In order to evaluate the worst-case risk of deploying GAIL-learned policies, we

studied the distributions (see Figure 3.1) of trajectory-costs (according to the expert’s

cost function) for the GAIL agents and experts at different control tasks (see Table 3.1).

We observed that the distributions for GAIL are more heavy-tailed than the expert,

where the tail corresponds to occurrences of high trajectory-costs (refer to Figure 3.1).

In order to quantify tail risk, we use Conditional-Value-at-Risk (CV aR) (Rockafel-

lar and Uryasev, 2000) (refer to Section 2.5). CV aR is defined as the expected cost

above a given level of confidence and is a popular and coherent tail risk measure. The

heavier the tail, the higher the value of CV aR. We observe that the value of CV aR

is much higher for GAIL than the experts at most of the tasks (see Table 3.1) which

again suggests that the GAIL agents encounter high-cost trajectories more often than

the experts. Since high trajectory-costs may correspond to events of catastrophic fail-

ure, GAIL agents are not reliable in risk-sensitive applications.

In this work, we aim to explicitly minimize expected worst-case risk for a given

confidence bound (quantified by CV aR) along with the GAIL objective, such that the

learned policies are more reliable than GAIL, when deployed, while still preserving

the average performance of GAIL. Chow and Ghavamzadeh (2014) developed policy

Figure 3.1: Histograms of the costs of 250 trajectories generated by the expert and
GAIL agents at high-dimensional continuous control tasks, Hopper and Hu-
manoid, from OpenAI Gym. The inset diagrams show zoomed-in views of
the tails of these distributions (the region beyond 2σ of the mean). We ob-
serve that the GAIL agents produce tails heavier than the expert, indicating
that GAIL is more prone to generating high-cost trajectories.

gradient and actor-critic algorithms for mean-CV aR optimization for learning policies

in the classic RL setting. However these algorithms are not directly applicable in our

setting of learning a policy from a set of expert-demonstrated trajectories. We take

inspiration from this work and make the following contributions:

1. We formulate the Risk-Averse Imitation Learning (RAIL) algorithm which opti-

mizes CV aR in addition to the original GAIL objective.

2. We evaluate RAIL at a number of benchmark control tasks and demonstrate that

it obtains policies with lesser tail risk at test time than GAIL.

3.2 Related work

This section encapsulates the representative work in this space of imitation learning and

risk-sensitivity.

15

3.2.1 Imitation Learning

Imitation learning or Learning from Demonstration (LfD) provides methods of learning

policies through imitation of an expert’s behavior without the need of a handcrafted cost

function (Schaal, 1997). These algorithms fall into two broad categories:

1. Behavioral Cloning

2. Apprenticeship Learning

3. Model-free Imitation Learning

The first category, Behavioral Cloning (Pomerleau, 1989; Bojarski et al., 2016),

uses supervised learning to fit a policy function to the state-action pairs from expert-

demonstrated trajectories. Despite its simplicity, Behavioral Cloning fails to work well

when only a limited amount of data is available. These algorithms assume that ob-

servations are i.i.d. and learn to fit single time-step decisions. Whereas, in sequential

decision making problems - where predicted actions affect the future observations (e.g.

driving) - the i.i.d. assumption is violated. As a result, these algorithms suffer from the

problem of compounding error due to covariate shift (Ross and Bagnell, 2010).

Figure 3.2: An illustration of the compounding error due to covariate shift (adapted
from Sergey Levine’s IL slides). As the learning agent deviates from the
expected trajectory due to small errors, since it hasn’t seen expert data in
these erroneous zones, it makes even more errors, thereby compounding
the deviation in trajectory.

Approaches to ameliorate the issue of compounding error like SMILe (Ross and

Bagnell, 2010), SEARN (Daumé et al., 2009) suffer from instability in practical ap-

plications (Ross et al., 2011) while DAgger (Ross et al., 2011) and AggreVaTe (Ross

16

http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_2_behavior_cloning.pdf

and Bagnell, 2014) require the agent to query the expert during training which is not

allowed in our setting of learning from a fixed set of expert demonstrations.

Another drawback of Behavioral Cloning is that it does not allow the agent to ex-

plore alternate policies for achieving the same objective that might be efficient in some

sense other than what the expert cared for. An exemplar of this behaviorwherein an

agent learns some unexpected policies are the ‘alien-esque’ gameplay shown by the Al-

phaZero agent (Silver et al., 2017), whose novel moves (ones that humans have never

played) have taken the chess community by awe and surprise (Knight, 2017).

The second category of algorithms is known as Apprenticeship Learning (Abbeel

and Ng, 2004), which involves Inverse Reinforcement Learning followed by Reinforce-

ment Learning. Inverse Reinforcement Learning (IRL) (Ng et al., 2000; Abbeel and

Ng, 2011) attempts to uncover the underlying reward function that the expert is trying

to maximize from a set of expert-demonstrated trajectories. This reward function suc-

cinctly encodes the expert’s behavior and are then used by an agent to learn a policy

through an RL algorithm. IRL algorithms find reward functions that prioritize entire

trajectories over others. Unlike behavioral cloning, they do not fit single time-step de-

cisions, and hence they do not suffer from the issue of compounding error. However,

Apprenticeship Learning algorithms are indirect because they first learn a reward func-

tion that explains expert behavior but do not tell the learner how to act directly. The job

of learning an actionable policy is left to RL algorithms. Moreover, IRL algorithms are

computationally expensive and have scalability issues in large environments (Levine

and Koltun, 2012).

The recently proposed Generative Adversarial Imitation Learning (GAIL) algorithm

(Ho and Ermon, 2016) presents a novel mathematical framework in which the agent

learns to act by directly extracting a policy from expert-demonstrated trajectories, as if

it were obtained by RL following IRL. Hence, this is a model-free imitation learning

algorithm which harnesses generative adversarial training to fit distributions of states

and actions defining expert behavior. The authors show that unlike Behavioral Cloning,

this method is not prone to the issue of compounding error and it is also scalable to

large environments. Currently, GAIL provides state-of-the-art performance at several

benchmark control tasks, including complex, high-dimensional physics-based control

tasks over various amounts of expert data.

17

3.2.2 Risk-Sensitivity

Risk sensitivity is integral to human learning (Nagengast et al., 2010), and risk-sensitive

decision-making problems, in the context of MDPs, have been investigated in vari-

ous fields, e.g., in machine learning (Heger, 1994) and robotics (Shalev-Shwartz et al.,

2016; Rajeswaran et al., 2016). Garcıa and Fernández (2015) give a comprehensive

overview of different risk-sensitive RL algorithms. They fall in two broad categories.

The first category includes methods that constrain the agent to safe states during ex-

ploration while the second modifies the optimality criterion of the agent to embed a

term for minimizing risk. Studies on risk-minimization are rather scarce in the imita-

tion learning literature. Much of the literature on imitation learning has been developed

with average-case performance at the center, overlooking tail-end events.

In the portfolio-risk optimization literature, tail risk is a form of portfolio risk that

arises when the possibility that an investment moving more than three standard de-

viations away from the mean is greater than what is shown by a normal distribution

(Investopedia (2017)). Tail risk corresponds to events that have a small probability of

occurring. When the distribution of market returns is heavy-tailed, tail risk is high be-

cause there is a probability, which may be small, that an investment will move beyond

three standard deviations.

Conditional-Value-at-Risk (CV aR) (Rockafellar and Uryasev (2000)) is the most

conservative measure of tail risk (Dalleh (2011)) and unlike other measures like Vari-

ance and Value at Risk (V aR), it can be applied when the distribution of returns is not

normal.

3.3 Methodology

We use CV aR to quantify the tail risk of the trajectory-cost variable Rπ(ξ|c(D)), de-

fined in the context of GAIL as:

Rπ(ξ|c(D)) =

Lξ−1∑
t=0

γtc(D(st, at)) (3.1)

where c(·) is order-preserving.

18

Next, we formulate the optimization problem to optimize CV aR ofRπ(ξ|c(D)) as:

min
π

max
c

CV aRα(Rπ(ξ|c(D))) = min
π,ν

max
c

Hα(Rπ(ξ|c(D)), ν) (3.2)

Integrating this with the GAIL objective of equation 2.9, we have the following:

min
π,ν

max
D∈(0,1)S×A

J = min
π,ν

max
D∈(0,1)S×A

{
−H(π) + Eπ[log(D(s, a))]

+ EπE [log(1−D(s, a))]

+ λCV aR Hα(Rπ(ξ|c(D)), ν)
}

(3.3)

Note that as c(·) is order-preserving, the maximization with respect to c in equation 3.2

is equivalent to maximization with respect to D in equation 3.3. λCV aR is a constant

that controls the amount of weightage given to CV aR optimization relative to the orig-

inal GAIL objective. Equation 3.3 comprises the objective function of the proposed

Risk-Averse Imitation Learning (RAIL) algorithm. Algorithm 1 gives the pseudo-

code. Please refer to Section 3.3.1 for the expressions of gradients of the CV aR term,

Hα(Rπ(ξ|c(D)), ν) with respect to π, D and ν and their derivations. When α → 0,

namely the risk-neutral case, CV aR0, by definition, is equal to the mean of all trajec-

tory costs and hence, RAIL→ GAIL. We use Adam algorithm (Kingma and Ba (2015))

for gradient ascent in the discriminator and Trust Region Policy Optimization (TRPO)

(Schulman et al. (2015)) for policy gradient descent in the generator. The CV aR term

α is trained by batch gradient descent (Haykin (1998)).

3.3.1 Derivation of gradients

In this section we derive expressions of gradients of the CV aR term in equation 3.3

w.r.t. D, π, and ν, inspired by those shown by Chow and Ghavamzadeh (2014). Let us

denote Hα(Dπ(ξ|c(D)), ν) by LCV aR.

19

Algorithm 1 Risk-Averse Imitation learning (RAIL)

Input: Expert trajectories ξE ∼ πE , hyper-parameters α, β, λCV aR
Output: Optimized learner’s policy π

1: Initialization: θ ← θ0, w ← w0, ν ← ν0, λ← λCV aR
2: repeat
3: Sample trajectories ξi ∼ πθi
4: Estimate Ĥα(Dπ(ξ|c(D)), ν)

= ν + 1
1−αEξi [(D

π(ξ|c(D))− ν)+]

5: Gradient ascent on discriminator parameters using:
∇wiJ = Êξi [∇wi log(D(s, a))]

+ ÊξE [∇wi log(1−D(s, a))]

+ λCV aR∇wiHα(Rπ(ξ|c(D)), ν)

6: KL-constrained natural gradient descent step (TRPO) on policy parameters using:
∇θiJ = E(s,a)∼ξi [∇θilog(πθ(a|s)Q(s, a)]

− ∇θiH(πθ)

+λCV aR∇θiHα(Rπ(ξ|c(D)), ν)

where Q(s̄, ā) =

E(s,a)∼ξi [log(Dwi+1
(s, a))|s0 = s̄, a0 = ā]

7: Gradient descent on CVaR parameters:
∇νiJ = ∇νiHα(Rπ(ξ|c(D)), ν)

8: until i == max_iter

3.3.1.1 Gradient of LCV aR w.r.t. D:

∇D LCV aR = ∇D
[
ν +

1

1− α
Eξ∼π

[
(Dπ(ξ|c(D))− ν)+

]]
=

1

1− α
Eξ∼π [∇D Dπ(ξ|c(D))1(Dπ(ξ|c(D)) ≥ ν)]

(3.4)

where 1(·) denotes the indicator function.

Now,

∇D Dπ(ξ|c(D)) = ∇c D
π(ξ|c(D)) ∇D c(D) (3.5)

20

∇c D
π(ξ|c(D)) = ∇c

Lξ−1∑
t=0

γtc(st, at)

=

Lξ−1∑
t=0

γt

=
1− γLξ
1− γ

(3.6)

Substituting equation 3.6 in 3.5 and then 3.5 in 3.4, we have the following:

∇DLCV aR =
1

1− α
Eξ∼π

[
1− γLξ
1− γ

1(Dπ(ξ|c(D)) ≥ ν)∇D c(D)

]
(3.7)

3.3.1.2 Gradient of LCV aR w.r.t. π

∇π LCV aR = ∇π Hα(Dπ(ξ|c(D)), ν)

= ∇π

[
ν +

1

1− α
Eξ∼π

[
(Dπ(ξ|c(D))− ν)+

]]
=

1

1− α
∇π Eξ∼π

[
(Dπ(ξ|c(D))− ν)+

]
=

1

1− α
Eξ∼π

[
(∇π logP (ξ|π))(Dπ(ξ|c(D))− ν)+

]
(3.8)

3.3.1.3 Gradient of LCV aR w.r.t. ν

∇ν LCV aR = ∇ν

[
ν +

1

1− α
Eξ∼π

[
(Dπ(ξ|c(D))− ν)+

]]
= 1 +

1

1− α
Eξ∼π

[
∇ν (Dπ(ξ|c(D))− ν)+

]
= 1− 1

1− α
Eξ∼π [1(Dπ(ξ|c(D)) ≥ ν)]

(3.9)

21

3.4 Experiments

In this section, we provide details on the experiments performed - namely the environ-

ments tested on, the model architecture, the hyperparameters used.

We compare the tail risk of policies learned by GAIL and RAIL for five contin-

uous control tasks listed in Table 3.1. All these environments were simulated using

MuJoCo Physics Simulator (Todorov et al., 2012). Each of these environments come

packed with a “true" reward function in OpenAI Gym (Brockman et al., 2016). Ho and

Ermon (2016) trained neural network policies using Trust Region Policy Optimization

(TRPO) (Schulman et al., 2015) on these reward functions to achieve state-of-the-art

performance and have made the pre-trained models publicly available for all these envi-

ronments as a part of their repository1. They used these policies to generate the expert

trajectories in their work on GAIL. For a fair comparison, we use the same policies

to generate expert trajectories in our experiments. Table 3.1 gives the number of ex-

pert trajectories sampled for each environment. These numbers correspond to the best

results reported in Ho and Ermon (2016).

Table 3.1: Hyperparameters for the RAIL experiments on various continuous control
tasks from OpenAI Gym.

Task #training
iterations

#expert
trajectories λCV aR

Reacher 200 18 0.25
HalfCheetah 500 25 0.5
Hopper 500 25 0.5
Walker 500 25 0.25
Humanoid 1500 240 0.75

Again, following Ho and Ermon (2016), we model the generator (policy), discrim-

inator and value function (used for advantage estimation (Sutton and Barto, 1998) for

the generator) with multi-layer perceptrons of the following architecture:

obsDim - fc_100 - tanh - fc_100 - tanh - outDim

where fc_100 means fully connected layer with 100 nodes, tanh represents the

hyperbolic-tangent activation function of the hidden layers, obsDim stands for the di-

mensionality of the observed feature space, outDim is equal to 1 for the discriminator
1https://github.com/openai/imitation

22

https://github.com/openai/imitation

and value function networks and equal to the twice of the dimensionality of the action

space (for mean and standard deviation of the Gaussian from which the action should be

sampled) for the policy network. For example, in case of Humanoid, obsDim = 376

and outDim = 34 in the policy network. The value of the CV aR coefficient λCV aR is

set as given by Table 3.1 after a coarse hyperparameter search. All other hyperparam-

eters corresponding to the GAIL component of the algorithm are set identical to those

used by Ho and Ermon (2016) in their repository for all the experiments. The value of

α in the CV aR term is set to 0.9 and its lone parameter, ν, is trained by batch gradient

descent with learning rate 0.01. We set α = 0.9 for V aRα and CV aRα and estimate all

metrics with N = 50 sampled trajectories (as followed by Ho and Ermon (2016)).

3.5 Results

Table 3.2: Comparison of expert, GAIL, and RAIL in terms of the tail risk metrics -
V aR0.9 and CV aR0.9. All the scores are calculated on samples of 50 trajec-
tories. With smaller values of V aR and CV aR, RAIL outperforms GAIL
in all the 5 continuous control tasks and also outperforms the expert in some
cases.

Environment Dimensionality VaR CVaR
Obs Action Expert GAIL RAIL Expert GAIL RAIL

Reacher 11 2 5.88 9.55 7.28 6.34 13.25 9.41
Hopper 11 3 -3754 -1758 -3745 -2674 -1347 -3727
HalfCheetah 17 6 -3431 -2688 -3150 -3356 -2220 -2945
Walker 17 6 -5402 -5314 -5404 -2310 -3359 -3939
Humanoid 376 17 -9839 -2641 -9252 -4591 -1298 -4640

Now we define the metrics we use to evaluate the efficacy of RAIL at reducing

the tail risk of GAIL learned policies. Given an agent A’s policy πA we roll out N

trajectories T = {ξi}Ni=1 from it and estimate V aRα and CV aRα as defined in Section

2.5. V aRα denotes the value under which the trajectory-cost remains with probability

α and CV aRα gives the expected value of cost above V aRα. Intuitively, CV aRα gives

the average value of cost of the worst cases that have a total probability no more than

(1− α). The lower the value of both these metrics, the lower is the tail risk.

In order to compare tail risk of an agent with respect to the expert, E, we define per-

centage relative-V aRα as follows:

23

V aRα(A|E) = 100× V aRα(E)− V aRα(A)

|V aRα(E)|
% (3.10)

Similarly, we define percentage relative-CV aRα as:

CV aRα(A|E) = 100× CV aRα(E)− CV aRα(A)

|CV aRα(E)|
% (3.11)

The higher these numbers, the lesser is the tail risk of agent A. We define Gain

in Reliability (GR) as the difference in percentage relative tail risk between RAIL and

GAIL agents.

GR-V aRα = V aRα(RAIL|E)− V aRα(GAIL|E) (3.12)

GR-CV aRα = CV aRα(RAIL|E)− CV aRα(GAIL|E) (3.13)

Table 3.3: Values of percentage relative tail risk measures and gains in reliability on
using RAIL over GAIL for the different continuous control tasks. RAIL
shows a remarkable improvement over GAIL in both the metrics.

Environment V aR0.9(A|E) (%)
GR-V aRα

CV aR0.9(A|E) (%)
GR-CV aRαGAIL RAIL (%) GAIL RAIL (%)

Reacher -62.41 -23.81 38.61 -108.99 -48.42 60.57
Hopper -53.17 -0.23 52.94 -49.62 39.38 89.00
HalfCheetah -21.66 -8.20 13.46 -33.84 -12.24 21.60
Walker -1.64 0.03 1.66 45.39 70.52 25.13
Humanoid -73.16 -5.97 67.19 -71.71 1.07 72.78

3.6 Discussion

In this section, we discuss the results of comparison between GAIL and RAIL. The

expert’s performance is used as a benchmark. Tables 3.2 and 3.3 present the values of

our evaluation metrics for different continuous-control tasks. The following are some

interesting observations that we make:

• RAIL obtains superior performance than GAIL at both tail risk measures – V aR0.9

and CV aR0.9, across a wide range of continuous-control tasks, without increas-

24

Figure 3.3: Convergence of mean trajectory-cost during training. The faded curves cor-
responds to the original value of mean trajectory-cost which varies highly
between successive iterations. The data is smoothened with a moving av-
erage filter of window size 21 to demonstrate the prevalent behavior and
plotted with solid curves. RAIL converges almost as fast as GAIL at all the
five continuous-control tasks, and at times, even faster.

ing sample complexity. This shows that RAIL is a superior choice than GAIL for

imitation learning in risk-sensitive applications.

• The applicability of RAIL is not limited to environments in which the distribu-

tion of trajectory-cost is heavy-tailed for GAIL. Rockafellar and Uryasev (2000)

showed that if the distribution of the risk variable Z be normal, CV aRα(Z) =

µZ + a(α)σZ , where a(α) is a constant for a given α, µZ and σZ are the mean

and standard deviation of Z. Thus, in the absence of a heavy tail, minimization

of CV aRα of the trajectory cost aids in learning better policies by contributing

to the minimization of the mean and standard deviation of trajectory cost. The

results on Reacher-v1 corroborate our claims. Although the histogram does not

show a heavy tail (Figure 3.4), the mean converges fine (Figure 3.3) and tail risk

scores are improved (Table 3.2) which in this case indicates the distribution of

trajectory-costs is more condensed around the mean than GAIL. Thus we can use

RAIL instead of GAIL, no matter whether the distribution of trajectory costs is

heavy-tailed for GAIL or not.

• Figure 3.3 shows the variation of mean trajectory cost over training iterations for

GAIL and RAIL. We observe that RAIL converges almost as fast as GAIL at all

the continuous-control tasks in discussion, and at times, even faster.

25

Figure 3.4: Histogram of costs of 250 trajectories generated by a GAIL-learned policy
for Reacher-v1. The distribution shows no heavy tail. From Table 3.2 and
Figure 3.3, we observe that RAIL performs as well as GAIL even in cases
where the distribution of trajectory costs is not heavy-tailed.

• The success of RAIL in learning a viable policy for Humanoid-v1 suggests that

RAIL is scalable to large environments. Scalability is one of the salient features

of GAIL. RAIL preserves the scalability of GAIL while showing lower tail risk.

3.7 Conclusion and Future Work

RAIL agents show lesser tail risk than GAIL agents after training has been completed.

However it still requires the agent to act in the real world and sample trajectories (line 3

in Algorithm 1) during training. One way to rule out environmental interaction during

training is to make the agent act in a simulator while learning from the expert’s real-

world demonstrations. The setting changes to that of third person imitation learning

(Stadie et al. (2017)). The RAIL framework can be ported to this formulation, which is

left as future work. Depending on the environmental constraints, one could also adopt

the active learning framework (Ross et al., 2011). Furthermore, more work is required

for theoretically justifying the reliability of the RAIL framework.

In conclusion, this work presents the RAIL algorithm, which incorporates CV aR

optimization within the original GAIL algorithm to minimize tail risk and thus improve

reliability of learned policies. We report significant improvement over GAIL at a num-

ber of evaluation metrics on five continuous-control tasks. Thus the proposed algorithm

is a viable step in the direction of learning low-risk policies by imitation learning in

complex environments, especially in risk-sensitive applications like robotic surgery and

autonomous driving. We plan to test RAIL on fielded robotic applications in the future.

26

CHAPTER 4

Multi-Agent Learning

4.1 Motivation

In the real world, learning often happens in groups rather individually, in silos. For

instance, nearly all animals from the time of infancy learn from their parents or other

members of the species. Classical learning methods, inherently single-agent, are hence

handicapped since they act alone and can only use their own experiences with the en-

vironment as guidance. We believe that multiple learning agents working together can

accomplish far more than a single agent ever could, that too more efficiently.

Multi-agent reinforcement learning (MARL) is concerned with a set of autonomous

agents that share a common environment. Reasoning about other agents’ intentions and

being able to predict their behavior is important in multi-agent systems, in which the

agents might have a diverse, and sometimes competing, set of goals. This remains

a challenging problem due to the inherent non-stationarity of such domains. Over

and above the problems faced in single-agent learning (e.g. exploration-exploitation

dilemma, temporal credit-assignment problem, etc), Busoniu et al. (2008) outline the

following critical issues faced in MARL :

1. Non-stationarity - MARL presents a moving-target problem since the best policy

changes as the other agents’ policies change.

2. Curse of dimensionality - The growth of state and action variables with the num-

ber of agents is exponential.

3. Specifying a good goal - Since the agents’ returns are correlated and cannot be

maximized independently, this is hard.

4. Exploration - Apart from having to explore the environment, the agents also have

to obtain information about other agents.

5. Coordination - The effect of an agent’s action on the environment also depends

on the actions taken by other agents. So a) the first agent doesn’t know for sure

how much to credit its own action for the obtained reward, and b) there arises a

need of mutually consistent actions in order to achieve the intended effect.

Most practical real world applications are inherently multi-agent in nature, and re-

quire strategic interactions among a large number of entities. Ranging from trading

agents in stock markets and online advertising bidding to gaming bots in Massively

Multiplayer Online Role-Playing Games (MMORPGs, like StarCraft and DoTA), and

more recently, autonomous vehicles.

4.2 Related work

4.2.1 Classical approaches

The classical MARL survey paper (Busoniu et al., 2008) offers an excellent birds-eye

view of classical Multi-Agent RL, organizing it into an insightful taxonomy. As men-

tioned above, it also outlines the challenges in MARL as compared to the single-agent

case. Learning in MARL is fundamentally difficult since agents not only interact with

the environment but also with each other.

The simplest option is to let each agent a learn an individual action-value function

Qa independently, as in Independent Q-learning (Tan, 1993), which considers other

agents as a part of the environment. This ostrich-esque approach of modeling everything

as multiple single-agents often fails as the multi-agent environment breaks the theoret-

ical convergence guarantees and makes the learning unstable: the changes in strategy

of one agent would affect the strategies of other agents and vice-versa (Matignon et al.,

2012). In simple words, each agent’s learning is confounded by the learning and explo-

ration of others.

With multiple agents learning simultaneously in long, episodic tasks, it makes sense

for them to be able to learn and bootstrap from each other’s experience. Using clas-

sical RL techniques of SARSA with the CMAC-tiling for function approximation,

(Kalyanakrishnan et al., 2006) uses explicit communication via a central controller for

28

sharing their individual network’s parameters. Even with tiny errors in communication,

all the agents learn the same policy in expectation. Similarly, (Duan et al., 2012) uses

communication to create a joint-state, joint-action space and use Nash Q-learning for

the agents.

4.2.2 Recent (and deep) approaches

Moving on to the deep RL setting, (Tampuu et al., 2017) extend the classic DQN to a

setting in which 2 agents can receive the game inputs and rewards simultaneously. By

modifying the reward scheme for the classic Pong game in ATARI, they analyze the

behaviour of the agents under a continuum of cooperative and competitive setting.

The novel paradigm of centralized training with decentralized execution (Kraemer

and Banerjee, 2016) has recently attracted a lot of attention in the RL community (Lowe

et al., 2017; Foerster et al., 2018). However, many challenges surrounding how to

best exploit centralized training remain open. In Foerster et al. (2018), the authors

proposed a counterfactual multi-agent policy gradient method that uses a centralized

advantage to estimate whether the action of one agent would improve the global reward,

and decentralized actors to optimize the agent policy.

Lowe et al. (2017) also utilize the framework of decentralized execution and cen-

tralized training to develop multi-agent multi-agent actor-critic algorithm that can coor-

dinate agents in mixed cooperative-competitive environments. Thhey propose a multi-

agent extension to the DDPG algorithm (Lillicrap et al., 2016), christened MADDPG,

using a set of actor and all-knowing critic models. The primary motivation behind

MADDPG is that, if we know the actions taken by all agents, the environment is station-

ary even as the policies change since P (s′|s, a1, . . . , aN , π1, . . . , πN) = P (s′|s, a1, . . . , aN) =

P (s′|s, a1, . . . , aN , π
′
1, . . . , π

′
N) for any πi 6= π′i (Lowe et al., 2017). This is not the case

if we do not explicitly condition on the actions of other agents, as done for most tra-

ditional RL methods. More recent approaches have tried modeling the other agents’

actions using the ego-centric agent’s own policy and updating their belief in the others’

hidden states, in both cooperative and competitive settings (Raileanu et al., 2018).

Some common paradigms that emerge from the literature are enumerated as follows :

29

Reward Sharing

Now, one of the main problems of multi-agent RL that distinguishes it from the classical

single-agent is that multi-agent domains are non-stationary from agents’ local perspec-

tives, due to teammates’ interactions with the environment. Moreover, exploratory ac-

tions by other agents could lead to low communal returns even though the current agent

might have taken an optimal action. (Omidshafiei et al., 2017) handles this issue by

using Hysteretic Q-learning, which does not ignore low returns by assuming that they

are caused by teammates’ exploratory actions, but instead supposes that these could

be a result of the environment stochasticity. Using a smaller learning rate when the

TD-error is negative, this paper combines Hysteretic Q-learning with Deep Recurrent

Q-Networks for these partially observable environments.

In the setting of RoboSoccer, if one agent scores the goal, should his teammates get

a reward for it as well? If so, to what extent? In (Hausknecht, 2016), the authors try

to hand-craft role-based reward functions for the agents with limited success because

of the difficulty in finding the right weightages of the sub-rewards. On the other hand,

(Liu et al., 2012) encourages the learning of individual reward functions. Assuming per-

fect information, each agent learns other agents’ stochastic policies using the empirical

probabilities observed in historical data in order to sample their actions. In toy cooper-

ative domains like ‘food-shelter’, this method results indeed results in specialization of

tasks with the individual reward functions learnt.

Parameter and Memory Sharing

Parameter sharing can be done in the following ways:

1. Sharing all the weights - This will yield similar policies among the agents, sub-

ject to the reliability in the mode of communication of these parameters, as in

(Kalyanakrishnan et al., 2006).

2. Sharing weights partially - Sharing weight only amongst the lowest network lay-

ers makes sense, since they are responsible for basic processing of the features

(Hausknecht, 2016). Actors will have similar policies, and critics will give similar

directions.

30

Sharing of the network weights helps in reducing the number of unique parameters.

(Hausknecht, 2016) also introduces sharing of the experience replay buffer, which indi-

rectly encourages similar policies. The expected resultant behaviour is that the agents

learn individual skills well.

Though MADDPG (Lowe et al., 2017) obtains state-of-the-art results for some

multi-agent games, it does not scale well with growing amount of agents. Recently,

(Chu and Ye, 2017) has proposed a parameter sharing deterministic policy gradient

method with 3 variants - shared actor-critic networks in case of common rewards, shared

actor only when rewards are different, and partially-shared critic with shared lower-

layers and separate heads for the value function. Thsi method reportedly gets better

results than MADDPG in multi-agent versions of WaterWorld, Ant, and Humanoid en-

vironments.

Communication Strategies

Explicitly sharing network parameters may not be feasible over limited badnwidth chan-

nels. Some principled methods have been proposed. (Foerster et al., 2016) introduces

Reinforced Inter-Agent Learning (RIAL), wherein each agent uses independent rein-

forcement learning to determine the communicated messages. (Hausknecht, 2016) uses

this with the communication ‘actions’ as output from the actor, which are concatenated

into the state space that is input to the critic. Another strategy is to allow agents to influ-

ence the communication strategy of their teammates through shared gradients applied to

the teammates’ communication actions (Hausknecht, 2016). The Differentiable Inter-

Agent Learning (DIAL) framework (Foerster et al., 2016) has a feedback signal (in the

form of gradients) from the other agents for the communication actions. This makes

it end-to-end differentiable as compared to Reinforced Inter-Agent Learning (RIAL),

which is only end-to-end trainable within each agent.

Recently, Hausknecht and Stone (2016) came up with an extension to the DDPG al-

gorithm to account for stable learning in continuous, bounded action spaces by notably

bounding action space gradient. The approach is described in detail in Section 2.7. We

use this algorithm for our subsequent experiments in the RoboSoccer domain.

31

4.3 Methodology

Following Hausknecht and Stone (2016) and the discussion in Section 2.7, we use the

following actor-critic architecture proposed for parameterized action spaces :

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

Figure 4.1: Model architecture (adapted from Hausknecht and Stone (2016)) : an actor-
critic model wherein in every timestep, the actor takes the state features as
input and outputs the four discrete actions and six associated parameters in
unison, which the critic then takes as input along with the state features to
compute Q-values of.

The hand-coded reward function being used is a linear combination of :

1. Move To Ball Reward - proportional to the change in distance between the agent

and the ball d(a, b)

2. First Touch Reward - Ikick - a reward given when the agent reaches the ball for

the first time in an episode

3. Kick To Goal Reward - proportional to the change in distance between the ball

and the center of the goal d(b, g)

4. Score Reward - Igoal - a reward for shooting the ball into the goal (the ultimate

task).

Mathematically, the reward at time t,

rt = (dt−1(a, b)− dt(a, b)) + Ikick + 3(dt−1(b, g)− dt(b, g)) + 5 Igoal (4.1)

32

4.4 Experiments

Using the code accompanying Hausknecht and Stone’s work on the parameterized ver-

sion of the DDPG algorithm (Hausknecht and Stone, 2016) as the baseline, the follow-

ing experiments were performed on the open-source1 HFO domain Hausknecht et al.

(2016). The actor-critic architecture modified for the parameterized action space was

used for the following combination of scenarios as baselines:

• one or more agents

• independent and shared network (lower) layers

• independent and shared replay buffers

• with and without a goalkeeper

• an expert or a naive goalkeeper

Both the actor and critic use the same architecture as shown in Figure 4.1 The 58

state input features are processed by four fully connected layers consisting of 1024 −

512 − 256 − 128 units respectively. Each fully connected (fc) layer is followed by a

rectified linear (ReLU) activation function with slope −10−2. Weights of the fc-layers

use Gaussian initialization with σ = 10−2. The linear output layer outputs a vector of

size 10 : four discrete actions and the six accompanying parameters. The critic also

takes as input this output vector from the actor and outputs a single scalar Q-value. We

use the ADAM solver (Kingma and Ba, 2015) for gradient descent, with learning rates

of both the actor and critic networks set to 10−3. Finally, both the target networks follow

the actor and critic networks with a tracking parameter of τ = 10−4.

4.5 Results and discussion

Some interesting observations:

• 2v0 (indp) - The 2 independent agents don’t score as often as the single agent,

but score faster when they do. This is probably because in expectation, one of the

agents is initialized closer to the ball as compared to the 1v0 case. It performs

1https://github.com/LARG/HFO/

33

https://github.com/LARG/HFO/

Table 4.1: Some interesting results showing the percentage of trials ending in a goal
being scored along with the average number of frames taken per goal. The
scenarios are described in the accompanying text.

Goals
Scenario Trials # % Iterations AvgFrame/Goal

1v0 275896 234031 84.83 250000 126.4
2v0 (indp) 247900 178995 72.20 250000 116.9

2v0 (memory) 307341 232201 75.55 ∼300000 116.3
2v0 (layers) 241160 183751 76.19 250000 120
1v1 (expert) 646046 392 0.06 ∼650000 136.8

2v1 (ind) 300127 197 0.07 300000 135.7
2v1 (memory) 250000 72 0.029 250000 -

2v1 (memory, pass) 198039 68 0.03 300000 220
1v1 (goalie) 236821 116909 49.37 250000 130

1v1 (goalie; noFreeze) 227804 119070 52.27 250000 127.6

worse probably because the agents compete and push the ball out of bounds, or

just don’t have enough samples to learn from.

• 2v0 (memory) - Sharing of the replay memory does only marginally better than

having 2 independent experience replays.

• 2v1 - Like 1v1, both the independent agents and those with a shared experience

replay memory performed pathetically with the (champion) heuristic goalie in

place. (For reference, 1v0 and 2v0 goal percentage is ∼ 80%)

• On visualizing the learnt policies, it is observed that the agents do not learn pass-

ing at all, and learn identical behavior of blindly chasing the ball, taking it near

the goal, and shooting it, which the champion goalie easily saves. The obvious

expert behavior in this case would be to pass it to a ‘free’ teammate, who will be

in a better position to score (since the goalie comes close to the first agent who

has the ball) i.e. learn a passing skill.

• 2v1 (memory, pass) - Even with the passing reward turned on, the goal conversion

rate is abysmal, and the agents do not learn ‘passing’. They do receive passing

rewards, but that is mostly by accident - one agent kicks the ball and the next time

the other does, while both follow the ball in the same line.

The weightage to an explicit penalty for the distance between the agents (to make

sure there is sufficient distance between them to consider passing) requires a lot

of parameter tuning, which highlights the problem of reward-shaping.

34

• 1v1 (goalie) - Another run featured a naive goalie, who would follow the y-

coordinates of the ball and freeze when the agent comes closer than a specified

threshold. The objective was to have a curriculum wherein this naive goalie kicks

in after 100000 episodes, after the agent would have learnt a decent policy of

dribbling and shooting into the goal.

• 1v1 (goalie; noFreeze) - To check to what extent the freezing contributed to the

good results, another experiment involved the goalie tracking the ball position

even when the agent is very close. Surprisingly, this resulted in a better perfor-

mance on both metrics!

• The visualization of the policy learnt revealed that the agent learns to run/dribble

right into the goal, and not explicitly kick into the goal from somewhere near it.

Further inspection revealed that is there is indeed nothing that incentivizes the

agent to learn to kick. The authors (Hausknecht and Stone, 2016) probably use

a penalty for the time taken as well, because their agent kicks the ball a short

distance every time it touches it.

Before outlining some limitations and directions of future work, we take a brief

digression from the RoboSoccer domain and explore the driving environment, which

has been the driving force behing this entire effort.

4.6 Development - MADRaS

In this section, we describe the development of “Multi-Agent DRiving Simulator"

(MADRaS). It is a multi-agent version of TORCS (Wymann et al., 2000), a racing

simulator popularly used for autonomous driving research by the reinforcement learn-

ing and imitation learning communities (Loiacono et al., 2010; Cardamone et al., 2009;

Mnih et al., 2016; Lillicrap et al., 2016).

35

4.6.1 Motivation

MADRaS is a multi-agent extension of Gym-TORCS 2 and is open source, lightweight,

easy to install, and has the OpenAI Gym API, which makes it ideal for beginners in

autonomous driving research. It enables independent control of tens of agents within

the same environment, opening up a prolific direction of research in multi-agent re-

inforcement learning and imitation learning research aimed at acquiring human-like

negotiation skills in complicated traffic situations - a major challenge in autonomous

driving that all major players are racing to solve.

The main issues with most open-source autonomous driving simulators like CARLA

(Dosovitskiy et al., 2017), AirSim (Shah et al., 2017), and DeepDrive (DeepDrive.io,

2018) are :

1. Lack of multi-agent control - To the best of our knowledge, these innately

support only egocentric control; that is, single agent behavior, and have pre-

programmed behaviors for the other agents. The task of negotiation in traffic

can be posed as that of finding the winning strategy in a multi-agent game, and

hence learning policies to control in a multi-agent setting is critical.

2. Lack of customizability of non-ego-control cars - The difficulty in introducing

agents with custom behaviors in these simulators restricts the diversity of real-

world scenarios that can be simulated. Since acting and learning in the real world

is dangerous and prohibitively expensive, we need the ability to be able to conjure

up all kinds of scenarios in a simulator, the lack of which would raise questions

about the capability of these self-driving cars in handling ’unseen’ scenarios.

The difficulty in introducing agents with custom behaviors, some of which could

be learned (in possible collaboration) in these simulators restricts the diversity of real-

world scenarios that can be simulated. To address this issues, we developed MADRaS,

wherein each car on the racing track can be independently controlled, and the control

policies of these multiple agents can be learned simultaneously. Since it is built on top

of TORCS, the customized control of each of the cars on the road enables the creation

of rich, custom-made traffic scenarios.
2https://github.com/ugo-nama-kun/gym_torcs

36

https://github.com/ugo-nama-kun/gym_torcs

Here are some links of the project3 :

• Blog - https://software.intel.com/en-us/articles/madras-a-multi-agent-driving-simulator

• Github repository - https://github.com/abhisheknaik96/MultiAgentTORCS

• Video teaser - https://www.youtube.com/watch?v=ZKzExvth3UE

Figure 4.2: MADRaS in action. The figure shows two controllable agents (blue-green)
in the foreground, along with other custom traffic cars. The two terminal
windows are logging the progress of both the agents simultaneously. The
tracks and the extent and kinds of sensory information logged are customiz-
able.

4.7 Future work

With a lot of evidence pointing towards the drawbacks of using hand-engineered re-

ward functions and the additional complications posed by the non-stationarity of the

multi-agent environment from the experiments performed in this chapter, the Curricu-

lum Learning approach is considered (Chapter 5) in order to make more headways into

the problem.

Even in the current multi-agent setup, we identify the following limitations and

suggest some directions of future work :

• Explicit communication - The sharing of experiences and parameters across lay-

ers is only an indirect method of communication. Humans and animals alike use a
3MADRaS also featured in FactorDaily, a popular-science media outlet :

https://factordaily.com/multi-agent-driving-sim-madras

37

https://software.intel.com/en-us/articles/madras-a-multi-agent-driving-simulator
https://github.com/abhisheknaik96/MultiAgentTORCS
https://www.youtube.com/watch?v=ZKzExvth3UE
https://factordaily.com/multi-agent-driving-sim-madras

distinct communication channel in order to convey thoughts and achieve cooper-

ation. Recent efforts have achieved success in limited conditions (Foerster et al.,

2016; Hausknecht, 2016; Sukhbaatar et al., 2016).

• Scalability - One of the main issues of multi-agent learning is that of scalability -

the extent of non-stationarity, the curse of dimensionality, all come into play. We

need to keep this in mind as we expand our proof-of-concept to beyond a couple

of agents trying to outwit a goalkeeper without requiring the need of unrealistic

computation power.

Moreover, the aim of this entire effort has been towards getting autonomous driving

vehicles on the road. Towards this end, we looked for existing open-source simulators

out there for trying out some of the multi-agent ideas (not limited to the ones outlined

in Section 4.2). We discovered that all of them innately support only egocentric control;

that is, single agent behavior, and have pre-programmed behaviors for the other agents.

The difficulty in introducing agents with custom behaviors in these simulators restricts

the diversity of real-world scenarios that can be simulated. To address this issue, we

developed MADRaS, wherein each car on the racing track can be independently con-

trolled, enabling the creation of rich, custom-made traffic scenarios, and learning the

policy of control of multiple agents simultaneously.

The following are some potential directions of future work that could be taken up in

the multi-agent autonomous driving space, using MADRaS :

1. Creating custom driving traffic scenarios - with different number of vehicles fol-

lowing different kinds of driving behaviour of lane-following, overtaking, etc.

The aim is to be able to create as many kinds of custom scenarios as possible

using TORCS. The objective is two-fold : firstly, being able to introduce all such

scenarios for the learning agent to encounter and learn from, and secondly, using

the TORCS game engine to annotate each frame of the sequences of episodes of

each of the scenarios in order to use them in imitation learning and active learning

paradigms.

2. Benchmarking multi-agent RL algorithms - this task would entail comparing the

performance of agents trained using multi-agent RL algorithms in MADRaS with

those trained via single-agent algorithms to demonstrate the need and efficacy of

38

attempting to solve the autonomous driving problem via a multi-agent framework.

For the purpose of benchmarking, we propose to use the following multi-agent

RL algorithms/frameworks : MADDPG (Lowe et al., 2017), PSMADDPG (Chu

and Ye, 2017), SOM (Raileanu et al., 2018), DIAL and RIAL (Foerster et al.,

2016).

3. Simulation of classical multi-agent scenarios :

• Platooning - One of the earliest instances of multi-agent systems being de-

ployed in vehicles was in the use of platooning (Varaiya, 1993), wherein

vehicles travel at highway speeds with small inter-vehicle spacing to reduce

congestion and still achieve high throughput without compromising safety.

• Pooling knowledge - Apart from transferring information about pile-ups

and possible diversions ahead to all the vehicles in the geographical vicin-

ity, this power of reliable communication can be used to pool together the

knowledge of multiple learning agents. An intuitive motivation could be to

consider a large gridworld. With a single learning agent, one could solve

the gridworld in n hours of training. With multiple learning agents pooling

their experiences, we could cut down the training time significantly, possi-

bly even linearly!

• Leveraging intent - Drivers on the road constantly anticipate the potential

actions of fellow drivers. As an example, for close maneuvering in car parks

and intersections, eye contact is made to ensure a shared understanding.4 As

inter vehicle communication becomes ubiquitous and reliable (shout out to

5G!), autonomous vehicles will be able to transmit their intent to neigh-

boring vehicles to implement the level of coordination beyond what human

drivers currently achieve using eye contact.

We wish to point out that MADRaS is not a finished end product, and we have

released it to the community for collaborative development. Among other things, our

wishlist of things we would like to see as a part of MADRaS are:

4Defense Advanced Research Projects Agency (DARPA) stated that traffic vehicle drivers, unnerved
by being unable to make eye contact with the robots, had resorted to watching the front wheels of the
robots for an indication of their intent (Fletcher et al., 2008).

39

1. The release of a rich set of custom-made traffic scenarios - This will help old

and new members of the community in bootstrapping their research by training

and testing on a bunch of such scenarios that are encountered in the real world.

2. Inter-vehicular communication module - With the advent of 5G, explicit com-

munication between the various agents on the road could lead to a richer pool of

knowledge that can be leveraged to make driving decisions. As of now, MADRaS

does not have an explicit communication module.

3. Integration with Intel RL Coach5 - With MADRaS being compatible with the

OpenAI-gym interface, it would be great to see its integration with Intel RL

Coach as well. This will enable the testing of a wide variety of the popular RL

algorithms in the self-driving space without the enormous overhead of coding up

all of those on one’s own before testing it out, especially for new entrants in this

field.

Interested researchers and developers in the community can report any incompati-

bility or bug by creating an issue in the GitHub repository. We hope MADRaS enables

us to work together with new and veteran researchers in the industry and academia alike

to make this FAD a reality!

5Intel RL Coach is an open source research framework for training and evaluating reinforcement
learning (RL) agents. It contains multi-threaded implementations for some of the state-of-the-art RL
algorithms, combined with various games and robotics environments. It enables efficient training of
reinforcement learning agents on a desktop computer, without requiring any additional hardware. (Intel-
AI, 2017)

40

CHAPTER 5

Curriculum Learning

5.1 Motivation

Instead of attacking a difficult learning problem in a monolithic fashion, we nearly

always break the problem down to a sequence of manageable stages and sub-goals that

are of progressively greater complexity. Humans make extensive use of this heuristic to

learn many motor skills - crawling, walking, running, etc (Schmidt et al., 2005). This

sequenced acquisition of skills is a valuable heuristic in machine learning and robotics

as well, e.g., (Konidaris and Barto, 2009). Such a defined order for learning skills is not

unlike our education system, wherein simpler topics are taught first before introducing

more intricate concepts.

Till now, we’ve been using hand-engineered reward functions that provide the agent

with frequent, informative rewards. However, the actual reward obtained from the envi-

ronment is only when a goal is scored, which is far too infrequent for DeepRL agents to

bootstrap a policy form scratch. While domain knowledge might be enough to specify

the ‘correct’ or optimal reward functions for small, low-dimensional tasks such as grid-

worlds and ATARI games, hand-designing reward functions becomes more complicated

in complex, high-dimensional, real-world scenarios like RoboSoccer or autonomous

driving. The complexity intensifies in the multi-agent case with a multitude of factors

requiring consideration, not limited to:

• How much reward should be given for a teammate scoring versus the agent?

• Should an agent be encouraged to move away from the ball if its teammate is

already approaching it?

• Should an agent be rewarded if its teammate moves the ball towards the goal?

• How should agents be rewarded for passing?

• How much sub-optimality will be introduced by a mistake in weighting these

different rewards?

In many senses, hand-designing a reward function for a complex task can be as

difficult as hand-coding a policy to solve that task. Hence, we turn towards a curriculum

learning-based framework.

5.2 Related work

5.2.1 Classical Usage

The idea of ‘starting small’ was introduced as early as in 1993 to learn a simple gram-

mar (Elman, 1993). In 2009, Bengio et al. (Bengio et al., 2009) introduced multi-stage

curriculum learning strategies for vision and language tasks. In the experiments they

conduct, they observe that training only on the ‘clean’ (not noisy) examples in the be-

ginning makes the training faster, since it doesn’t ‘confuse’ the learner. Additionally,

introducing gradually more difficult examples (classified using domain knowledge) im-

proves the training time as well.

5.2.2 Task Generation

A basic implementation of curriculum in the domain of robotics involves a 2-level hi-

erarchy (Karpathy and Van De Panne, 2012), wherein the higher-level curriculum has

a hand-designed ordering of tasks from easy to hard, and the lower-level curriculum

learns these tasks in stages - achieve (stochastic greedy local search for the first suc-

cessful experience), explore (try variants of a successful experience from a buffer),

generalize (learning an inverse model that maps initial and target states to the set of

actions to be taken). While such methods require a curriculum that needs to be manuall

specified, there has been some work in the space of automatic curriculum generation as

well. In (Narvekar et al., 2016), tasks are created using both domain knowledge and by

observing the agent’s performance on a task. Given a target task and some trajectory

tuples from it, they generate a set of source tasks. Work has also been done to auto-

matically generate a curriculum of start states that adapts to the agent’s performance

(Florensa et al., 2017).

42

5.2.3 Task Sequencing

As an alternative of manually ordering the tasks, automatic sequencing of these tasks

has also been attempted (Narvekar et al., 2017). They propose a curriculum MDP

framework (CMDP) wherein the state space is the policy the agent can have; the ac-

tions the different tasks the agent can train on (i.e. the goal state is the ultimate policy);

the transition function takes the CMDP to a new policy; and the reward function is neg-

ative of the amount of time required to train on a task. The goal is to find a sequence

of tasks such that the total cost is less the cost incurred by learning directly on a target

task. Since the tasks are learnt sequentially, the method could potentially suffer from

catastrophic forgetting (French, 1999), as in artificial neural networks, there is a ten-

dency for knowledge of previously learnt task(s) (e.g. task A) to be abruptly lost as

information relevant to the current task (e.g. task B) is incorporated. In other words,

training a neural network with new data causes it to overwrite (and thereby forget) what

it has learned on previous data. In such a scenario, ideas of elastic weight consolidation

(Kirkpatrick et al., 2017) or interleaving data from multiple tasks (Parisotto et al., 2016)

might be useful.

5.2.4 Incorporating Active Feedback

One of the main drawbacks of curriculum learning methods are the lack of usage of ac-

tive feedback. Once the curriculum is designed, it remains fixed and does not adapt with

training. In the paradigm of Self-Paced Learning (SPL) (Kumar et al., 2010), the cur-

riculum is dynamically generated by the learner itself, according to what the learner has

already learned. It embeds curriculum design as a regularization term into the learning

objective such that the points with a low error (and hence ‘easy’) are used for training

first. Samples with larger losses will be gradually appended to train a more ‘mature’

model. Narvekar et al. (2017) and Florensa et al. (2017) also design frameworks which

adapt to the agent’s performance.

43

5.3 Methodology

5.3.1 Task Generation

As discussed in Section 5.2.2 and 5.2.3, there exist methods which shown results on

small domains with automatic generation of the curriculum and the subsequent task

sequencing, but I believe this is an overkill. Given that we have so much prior domain

knowledge that we could use, it seems pointless to make an already difficult problem

even harder by expecting it to discover it’s own curriculum as well. For the application

of Half Field Offense, with the objective of just scoring a goal against an opponent team

(as compared to the full-fledged setting of RoboSoccer which requires defending skills

as well), the following set of simple sub-tasks of increasing complexity seem sufficient

for the ultimate ‘goal’ of dribbling the ball past a team of opponents in order to score a

goal:

1. Go to ball - the basic skill of approaching the ball

2. Dribble to goal - requires knowledge of (1), otherwise doesn’t know what to do

beyond kicking the ball once.

3. Shoot - another basic skill for the agent to learn that kicking the ball into the goal

is actually fruitful.

4. Shoot against keeper - once the agent knows how to shoot, it now has to learn to

score against a keeper.

5. Pass - another basic skill which could seen as a special case of shooting.

6. Pass and shoot - a combination of (4) and (5).

5.3.2 Task Sequencing

Curriculum Learning posits that if the agent is presented with a sequence or curricu-

lum of tasks in such as way that the knowledge learned in each task is utilized in the

next task, the agent will be able to more quickly and effectively learn to perform the

target task. Hence just designing these tasks isn’t enough, they have to be ordered in a

principled manner. Two prospective methodologies :

44

1. Random ordering - this approach should be used as a baseline, which naively

selects a random task from the set of possible tasks at each episode. The main

disadvantage is that the agent may be presented with an advanced task before

learning a basic skill, rendering the entire point of a curriculum useless. Since

given an infinite learning time, the agent will learn all the tasks as each task is

visited an infinite number of times.

2. Sequential ordering - using the same ordering as presented in Section ??. To

choose a task, an evaluation phase occurs every 10000 episodes or an average

performance of over 80% of maximum possible reward for that particular task

(as determined by domain knowledge). If the condition is met, the next task in

the ordering is chosen. The complete heuristic, inspired by Hausknecht (2016),

is reported in Algorithm 2.

As literature suggests, the experimental settings are ripe for catastrophic forgetting

to occur, wherein the network’s ‘knowledge’ of the previous tasks is ‘overwritten’ by

the learning on subsequent tasks (French, 1999). We investigate this phenomenon in

the Section 5.4.4.2.

Possible fixes:

1. Keep cycling through the tasks at regular intervals.

2. Keep a shared experience replay so that the agent has access to tuples from the

other tasks at in every iteration.

3. Use concepts like Elastic Weight Consolidation which exploits the Fischer Infor-

mation Matrix in order to overcome the catastrophic forgetting (Kirkpatrick et al.,

2017).

We use a heuristic-based approach to tackle this problem.

45

Algorithm 2 Sequential Ordering
1: procedure LEARN

2: current task index i = EvaluateTasks()
3: while iter < maxIter do
4: PlayEpisode(Ti) . Play and learn on current task
5: if iter % 10000 == 0 then
6: i = EvaluateTasks() . Update the task to be evaluated
7:
8: function EVALUATETASKS

9: for i ∈ 1 . . . |T | do . Following the ordering of tasks
10: average return Ravg

i = Evaluate(Ti)
11: if Ravg

i < 0.8×Rmax
i then

12: return i . Task Ti needs more training
13: return |T |

5.3.3 Task Encoding

The next challenge of learning from a curriculum of tasks is informing the agent which

task is currently active. Since that the state and action space is same, the agent has to

know which task it is currently optimizing for, otherwise it may inadvertently accrue

negative rewards simply by performing the wrong actions for the current task.

Again, the following methods of encoding these tasks will be used:

1. Integer IDs : Simple, but isn’t meaningful when used with neural networks.

2. One-hot representation : Possible, but does not encode any similarity between

tasks.

3. Task embeddings : Is more descriptive - encodes the objectives of the tasks and

hence any similarities between them.

With n tasks, the one-hot representation i ∈ Rn is projected into the task embedding

T ∈ Rd using an embedding matrix W emb ∈ Rd×n (the size and choice of which is

discussed later in this section) :

T = W embi (5.1)

In specific, task embeddings can be formed in the following two ways in order to

encode the tasks for integration into the network representations (Hausknecht, 2016) :

46

5.3.3.1 State Embedding

Once the task embedding is formed, it is concatenated with the state representation vec-

tor of the agent (refer to Figure 5.1(a)). The advantage of this approach is its simplicity,

but increases the size of the state space which could potentially make learning more

difficult. A point to note is that since the embedding is now a part of the large state

space, the agent could possibly learn to ‘ignore’ or pay less attention to it, rendering it

useless.

The number of unique sub-tasks in the curriculum determine the size of the one-hot

vector i. The size d of the task embedding vector is a hyperparameter. The experiments

in the following sections use 8 and 128-dimensional embedding vectors.

Figure 5.1: The task embedding architectures (courtesy Hausknecht (2016)). The State
Embedding architecture simply has the task embedding concatenated into
the feature state representation. On the other hand, the Weight Embedding
architecture has the activations of the task embedding vector multiplica-
tively interact with the activations of the agent’s second-to-last layer of the
network.

5.3.3.2 Weight Embedding

The Weight Embedding architecture is motivated by Oh et al. (2015)’s action-conditional

video prediction architecture for ATARI games. In specific, the activations of the task

embedding vector multiplicatively interact with the activations of the agent’s network:

47

o = W dec(WT �W ench) + b (5.2)

where T ∈ Rd is the task embedding vector, h ∈ Rc are the activations of a layer of

the agent’s network, W ∈ Rp×d and W enc ∈ Rp×c are matrices which transform T and

h into the same p-dimensional space. The Hadamard product of these encodings are

taken and decoded into the output space o ∈ Ro using the decoder matrix W dec ∈ Ro×f

and bias vector b ∈ Ro.

The dimension p of the intermediate encoding is a hyperparameter which controls

the trade-off between the extent of information encoded and the number of extra pa-

rameters. Following Hausknecht (2016), we used a fixed encoding of size f = 128.

5.3.3.3 Some design choices

Regarding the usage of task embeddings, the following questions had to be answered:

1. At which layer should the weight embedding be used?

Intuitively, the lower level layers (defined as the ones towards the input features)

are used for processing the state inputs and extracting features from them, and the

higher layers are concerned with output selection (e.g. action selection or q-value

estimation). Hence, it makes sense for the weight embedding to be incorporated

higher up in the network such that it influences the action selection and q-value

estimation. giving the network a chance to share the lower layers across tasks.

This discussion leads us to a follow-up question.

2. Should the task embeddings be incorporated in both the actor and critic networks?

Intuitively, yes. While the task embeddings are important for the actor network to

choose actions based on the task-at-hand, it is equally important for the critic to

be able to predict the q-value estimates based conditioned on the task. While we

don’t need the critic at ‘test time’, it is important to incorporate the embeddings

in the critic network in order to ensure the propagation of meaningful gradients

backward into the actor.

48

The final piece of the puzzle is W emb. The current framework gives the flexibility

of either freezing it after a manual initialization or allowing the network to learn it

along with the other parameters. The former allow for the incorporation of the available

domain knowledge. Since we know which components of reward function each of the

sub-tasks defined in section 5.3.1 depend on, the rows of W emb can be set accordingly

(for instance, assigning a higher ‘weightage’ to some tasks over others).

5.4 Experiments

This section describes the experiments performed with the aforementioned methodol-

ogy. The experiments were designed to answer the following questions:

1. Do the task embedding ideas actually help the agent discern between tasks to

optimize for their reward functions individually?

2. If so, what size of embeddings is necessary to incorporate enough information for

them to do so?

3. Additionally, how important is the order in which the sub-tasks are presented to

the learner? Does catastrophic forgetting of older tasks occur?

5.4.1 Evaluation procedure

The performance graphs in the following pages are made in the following way :

After every 10000 iterations, the training is paused and the agent is evaluated 100 times

on all the tasks present in the curriculum. An average performance over all the 100 runs

is plotted as a data point for each of the tasks.

49

5.4.2 Sanity check

5.4.2.1 Experimental setup

In order to check the efficacy of the task embeddings, we perform a simple experiment1

having two sub-tasks : MoveToBall and MoveAwayFromBall. As the names suggest,

the goal of the above sub-tasks is to move towards and away from the ball respectively,

and the agent gets a continuous positive reward for following the respective objectives,

and negative otherwise.

While these are seemingly straightforward tasks, they are chosen such that the agent

has to somehow differentiate between the two in order to learn optimal policies for both

of them simultaneously. If it doesn’t use the task embeddings, because of the intentional

high negative correlation within the tasks, the agent can optimize for atmost one of the

two tasks.

5.4.2.2 Results and discussion

From Figure 5.2a, it is clear that without the use of task embeddings, the agent has no

way to differentiate between the two tasks having the same feature representations. The

agent takes a long to learn anything meaningful, and when it does, it is at the cost of the

other. Remember, the tasks are complementary - naïvely optimizing for one will result

in poor performance in the other, as is clearly visible in Figure 5.2a.

Figure 5.2b and 5.2c demonstrate that using either of the task embedding architec-

ture, the agent successfully learns to differentiate between both the tasks and learns to

master both of them quickly. This success of both the task embeddings validates our

belief of the necessity of making the agent aware of the task-at-hand in the context of

curriculum learning. In the next subsection, we present a harder set of sub-tasks as a

curriculum for the task of scoring goals in RoboSoccer.

1The experiments in this particular section were performed as a part of a course project in ’CS7011
- Topics in Reinforcement Learning’, offered in Jul-Nov 2017. Other experiments, including the ones in
the subsequent section (5.4.3), were performed as a part of the DDP.

50

(a) No task embedding

(b) State embedding (c) Weight embedding

Figure 5.2: Comparison of performance of the task embeddings on the two simple and
complementary tasks. When no embeddings are used, the agent cannot
discern between the two tasks and ends of oscillating between optimizing
for one at the cost of the other. In contrast, both the tasks are quickly learned
using the state and weight embeddings (of size 32).

5.4.3 Soccer task

5.4.3.1 Experimental setup

For a starter single agent soccer task, a curriculum of the following sub-tasks mentioned

in Section 5.3.1 is used:

1. Reach ball task (MoveToBall)

The agent and the ball are randomly initialized on the field. The objective is

for the agent to reach the ball, and a reward to minimize the distance the distance

between them is provided. Mathematically,

rt = dt−1(agent, ball)− dt(agent, ball) (5.3)

51

2. Dribble task (KickToGoal)

The agent in possession of the ball is randomly initialized on the field. The ob-

jective is to minimize the distance between the ball and the goal. Mathematically,

the reward looks like :

rt = dt−1(goal, ball)− dt(goal, ball) (5.4)

3. Score goal task (Soccer)

This is the classic soccer task (Hausknecht, 2016). The agent and the ball are

randomly initialized on the field. The objective is to score a goal by putting the

ball through the goalposts. A reward of +1 is given when this is achieved, and 0

at all other times.

The Soccer task has a very sparse reward structure, and hence is extremely hard

to learn independently. But if the agent knows how to approach the ball and dribble

it towards the goal, this makes the original Soccer task a lot easier - which was the

primary motivation of using the paradigm of curriculum learning.

Note : The common termination conditions for the above tasks are when the objective

of the task is achieved, or if the ball is untouched for 100 timesteps, or if a maximum

of 500 timesteps elapse.

5.4.3.2 Results and discussion

In Figure 5.3, we observe that only the weight embedding architecture when used with

the sequential curriculum approaches stable learning in all of the three tasks involved.

In particular, when the state embedding is used, the agent learns to perform decently on

the MoveToBall and DribbleToGoal sub-tasks, but fail to learn the more difficult Soccer

task altogether.

The failure of the state embedding architecture is interesting. Intuitively, since the

architecture enables the agent to be aware of the different tasks at hand, it should be

able to show stable learning of all the policies. But this is not the case. One possibility

52

(a) State embedding (b) Weight embedding

Figure 5.3: The sequential curriculum ordering is used for generating both the perfor-
mance curves. An embedding of size 128 is used for both state and weight
embeddings. The weight embedding architecture seems to help the agent in
learning a good control policy for all the three tasks, as opposed to the state
embedding architecture, which fails to learn on the third and main Soccer
task altogether.

is that since the task embedding is concatenated with the state features themselves (i.e.

at the lowest layer), the network could possibly learn to ‘ignore’ these set of augmented

features. Experiments with concatenation of these embeddings with the higher levels

will be taken up in future work.

5.4.4 Ablative analysis

5.4.4.1 Importance of task embedding

In this subsection, we check the importance of the usage of the task embeddings in

this specific context of RoboSoccer experiments, wherein we learn to score a goal from

scratch. Plots in Figure 5.4 show that when task embeddings are not supplied to the

agent in any form, the agent fails to achieve stable learning across the three tasks. This

is in contrast to the best-performing model with the weight embedding architecture of

size 128, which converges to stable policies for all the three tasks simultaneously.

The failure when no embedding is used is easy to explain. In this case, since the

agent cannot differentiate between the tasks (and hence their objectives), it fails to learn

a meaningful policy for the sparse reward Soccer task. This underlines the original

motivation of using the task embeddings in the first place, as mentioned in Section

5.3.3.

53

(a) No embedding (b) Weight embedding

Figure 5.4: Comparison of performance of the agent trained naïvely with no embed-
dings versus the one trained with the weight embedding architecture (with
the sequential ordering and embedding size 128). As expected, the agent
fails to learn a stable control policy for all the three tasks when no embed-
dings are used.

5.4.4.2 Importance of task ordering

From Figure 5.5, we can see that the sequential ordering outlined in Algorithm 2 is

necessary for the agent to achieve a decent performance in the curriculum of tasks.

Specifically, in Figure 5.5a and 5.5b, we see that even the naïve model without any

knowledge of which task it is optimizing for achieves a decent score on both the helper

tasks with they are presented to it in a principled manner. We believe that further anal-

ysis of the exact tasks being presented to the agent will probably reveal that the agent

is almost never presented the full Soccer task since it never achieves a score above the

specified threshold on the helper tasks.

Closer inspection of Figure 5.5c and 5.5d reveal that only when the sequential or-

dering is used, the agent achieves stable performance across all the three tasks. When

the tasks are presented in a random order, though the agent learns to optimize for them

simultaneously with the help of the weight embedding architecture, there is catastrophic

forgetting seen in the second KickToGoal task (blue) in Figure 5.5c.

This underlines the importance of the usage of a principled ordering in learning a

curriculum of tasks, the lack of which might lead to catastrophic forgetting of the older

tasks (French, 1999).

54

(a) No embedding - random ordering (b) No embedding - sequential ordering

(c) Weight embedding - random ordering (d) Weight embedding - sequential ordering

Figure 5.5: Comparison of performance with the sequential ordering and the lack of it
for the different types of embeddings. The agent fails to demonstrate stable
learning on all the three tasks when they are presented in a random order,
while catastrophically forgetting the older tasks. The weight embedding has
size 8. Please refer to the main text for a detailed discussion.

Additional analysis of the size of the task embeddings

• From Figure 5.6a and 5.6b, it is clear that the state embedding architecture fails

with both the small and large dimensions of the embeddings with the reason stated

in Section 5.4.3.2.

• On the other hand, both the small and large dimensions of weight embeddings en-

able the agent to successfully learn the harder, sparse reward Soccer task as well.

Since a larger amount of information can be encoded within a larger embedding,

the model with the weight embedding of size 128 shows more stable learning as

compared to the one with size 8 (refer to Figure 5.6c and 5.6d)

55

(a) State embedding of size 8 (b) State embedding of size 128

(c) Weight embedding of size 8 (d) Weight embedding of size 128

Figure 5.6: Comparison of performance with different sizes of embeddings. The weight
embedding architecture is seen to show a decent performance across the
three tasks for both sizes of embeddings, while the state embeddings fail
completely on the third task.

5.5 Conclusions and Future Work

We’ve successfully answered the questions we set out to answer in Section 5.4, namely:

1. Yes, tasks embeddings indeed help in discerning between the different sub-tasks

that have been designed to make the target task easier, which enables the agent

to optimize for them individually (and simultaneously) despite no change in the

state feature representations.

2. We’ve also seen that the weight embedding architecture is fairly robust to the size

of the embeddings used, with larger sizes encoding more and sufficient informa-

tion.

3. Finally, we’ve also seen that the order in which the sub-tasks are presented to the

agent is critical in enabling stable learning across all the tasks at hand, while also

preventing catastrophic forgetting of the previous tasks.

56

This is just the beginning, though. There is a long way to go in achieving the final

objective of training an complete multi-agent RoboSoccer team in the 2D simulation

league with reinforcement learning. The following list enumerates some of the chal-

lenges with this approach and further problems that need to be addressed in order to

make this a reality :

• Extending to multi-agent scenarios - now that we have a proof-of-concept of

the curriculum learning approach in a single-agent setting, we can extend this

to the multi-agent setting, with the sub-tasks enumerated in Section 5.3.1. Ap-

proaches with both indirect and explicit communication can be explored, for in-

stance MADDPG (Lowe et al., 2017) and DIAL (Foerster et al., 2016).

• Handling catastrophic forgetting - the current heuristic ordering detailed in Algo-

rithm 2 is arguably an ad-hoc method to ameliorate the problem of catastrophic

forgetting while learning to achieve a high performance in the end goal. In this

scenario, more principled approaches using information theoretic concepts like

by Kirkpatrick et al. (2017) to keep the network parameters of the new task close

to the original ones could be worth exploring.

• Getting state embeddings to work - we concluded that the state embedding archi-

tecture failed because the network could have possible learned to ignore these em-

beddings which were concatenated at the lowest feature-level. As with the weight

embedding architecture, the state embeddings can be concatenated at higher lev-

els of the network, above the feature processing layers.

• More ablative experiments - apart from the experiments performed in Section

5.4.4, the importance of each component of the proposed approach can be under-

stood by :

1. Using task embeddings only in the actor which has to choose the actions to

be performed to check how important it is for the critic to discern between

the sub-tasks as well.

2. Removing or modifying some of the ‘helpful’ sub-tasks to see if the agent

can then learn the target-task with just the spare reward.

3. Checking how the sequential curriculum is being used in terms of frequency

and times of visits to the older tasks to prevent catastrophic forgetting.

57

Adequately answering the above questions by pursuing the aforementioned directions

would amount to significant progress towards a team of deep reinforcement learning

soccer players.

58

CHAPTER 6

Summary and Conclusions

This chapter tersely summarizes the contributions and takeaways from this thesis.

We first break down the ambitious project of getting autonomous vehicles on roads

of India(!) into three smaller problems in Chapter 1 - that of learning safe and reliable

policies from a set of expert demonstrations; learning a set of policies for multiple

agents simultaneously while interacting in the same environment; and finally learning

to perform hard and complex tasks by breaking them down into smaller and tractable

sub-tasks.

In particular, Chapter 3 first identifies a drawback with the existing state-of-the-art

algorithm of learning a behavioral policy from a fixed set of expert trajectories. The

heavy-tail exhibited by the trained agents make them unreliable in risk-sensitive appli-

cations like autonomous driving. Taking inspiration from portfolio risk-minimization

literature, we then propose a risk-averse imitation learning framework which explic-

itly minimizes the tail risk within the generative adversarial framework. Testing this

framework on a set on benchmark physics-based control tasks, we demonstrate that the

trajectories produced by this new learned agent exhibits lower tail-risk, making this ef-

fort a viable step in the direction of learning low-risk policies by imitation learning in

complex risk-sensitive environments.

In Chapter 4, we first outline the need for multi-agent learning and the associ-

ated complexities as compared to classical single-agent learning. Motivated by shar-

ing within agents, we evaluate several approaches like sharing parameters across agent,

sharing the experience replay buffer, etc, while trying to score goals in a goal manned by

a naïve or expert goalkeeper in the HFO RoboSoccer simulator. Analysis of the results

points towards the drawbacks of using hand-engineered reward functions and motivates

the usage of a curriculum learning based approach. Finally, faced with a lack of an

equivalent multi-agent simulator for autonomous driving research, we develop our own

on top of the existing TORCS. MADRaS offers the ability to create customized traffic

scenarios and train various multi-agent algorithms in a plug-and-play fashion.

Finally, in Chapter 5, we build on the inferences and insights from Chapter 4 of the

difficulty in designing appropriate reward functions for complex, real-world tasks. We

apply curriculum learning in the context of DRL by breaking down the sparse reward

goal-scoring task of RoboSoccer into smaller, individual sub-tasks of dribbling and

kicking the ball. We condition the network weights on the task-at-hand, and achieve

stable performance across the curriculum of tasks. Furthermore, we demonstrate the

significance of each component - the type of embedding, its size, the heuristic ordering

- via an elaborate ablative analysis.

While we aren’t ready to deploy self-driving cars on Indian roads yet, each of the

aforementioned efforts is a viable step towards achieving that dream in its own way.

6.1 The long-term goal

Now that we have a proof-of-concept in each of the above modules, we can start putting

them together. After successful deployment on simulated physics-based control tasks,

the risk-averse imitation learning framework can now be applied in the vehicular setting,

starting with the TORCS driving environment. The next step would be to incorporate

the ideas of multi-agent learning into it, since negotiating in traffic is a multi-player

game. Various kinds of traffic scenarios can me modeled with the newly-developed

MADRaS to subsequently test various multi-agent learning algorithms. We can then

leverage the literature on third-person learning to explore the transfer of these learned

policies to the real world. Finally, all of these aforementioned tasks require a flavor of

curriculum learning in order to make them more feasible and tractable.

While many open challenges remain to be addressed, we believe that sustained effort

in the direction of these seemingly small steps will lead to a giant leap for mankind in

terms of completely revolutionizing the transportation industry as we know it.

60

REFERENCES

1. Abbeel, P. and A. Y. Ng, Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the 21st International Conference on Machine Learning. ACM, 2004.

2. Abbeel, P. and A. Y. Ng, Inverse reinforcement learning. In Encyclopedia of machine
learning. Springer, 2011, 554–558.

3. Barto, A. G., R. S. Sutton, and C. W. Anderson (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man,
and cybernetics, (5), 834–846.

4. Bengio, Y., J. Louradour, R. Collobert, and J. Weston, Curriculum learning. In
Proceedings of the 26th annual International Conference on Machine Learning. ACM,
2009.

5. Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al. (2016). End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316.

6. Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba (2016). OpenAI gym. arXiv preprint arXiv:1606.01540.

7. Busoniu, L., R. Babuska, and B. De Schutter (2008). A comprehensive survey of mul-
tiagent reinforcement learning. IEEE Transactions on Systems, Man, And Cybernetics-
Part C: Applications and Reviews, 38 (2), 2008.

8. Cardamone, L., D. Loiacono, and P. L. Lanzi, Learning drivers for torcs through
imitation using supervised methods. In Computational Intelligence and Games, 2009.
CIG 2009. IEEE Symposium on. IEEE, 2009.

9. Chow, Y. and M. Ghavamzadeh, Algorithms for cvar optimization in mdps. In Ad-
vances in neural information processing systems. 2014.

10. Chu, X. and H. Ye (2017). Parameter sharing deep deterministic policy gradient for
cooperative multi-agent reinforcement learning. arXiv preprint arXiv:1710.00336.

11. Dalleh, N. (2011). Why is CVaR superior to VaR?(c2009). Ph.D. thesis.

12. Daumé, H., J. Langford, and D. Marcu (2009). Search-based structured prediction.
Machine learning, 75(3), 297–325.

13. DeepDrive.io (2018). Deepdrive. https://github.com/deepdrive/
deepdrive.

14. Dosovitskiy, A., G. Ros, F. Codevilla, A. Lopez, and V. Koltun, CARLA: An open ur-
ban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning.
2017.

15. Duan, Y., B. X. Cui, and X. H. Xu (2012). A multi-agent reinforcement learning
approach to robot soccer. Artificial Intelligence Review, 1–19.

61

https://github.com/deepdrive/deepdrive
https://github.com/deepdrive/deepdrive

16. Elman, J. L. (1993). Learning and development in neural networks: The importance
of starting small. Cognition, 48(1), 71–99.

17. Fletcher, L., S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How, J. Leonard, I. Miller,
M. Campbell, D. Huttenlocher, et al. (2008). The mit–cornell collision and why it
happened. Journal of Field Robotics, 25(10), 775–807.

18. Florensa, C., D. Held, M. Wulfmeier, and P. Abbeel, Reverse curriculum generation
for reinforcement learning. In Proceedings of the 1st Conference on Robotic Learning
(CoRL). 2017.

19. Foerster, J., Y. Assael, N. de Freitas, and S. Whiteson, Learning to communicate with
deep multi-agent reinforcement learning. In Advances in Neural Information Process-
ing Systems. 2016.

20. Foerster, J., G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, Counterfactual
multi-agent policy gradients. In Proceedings of the 2018 International Conference on
Autonomous Agents & Multiagent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

21. French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4), 128–135.

22. Garcıa, J. and F. Fernández (2015). A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1), 1437–1480.

23. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets. In Advances in neural infor-
mation processing systems. 2014.

24. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

25. Hausknecht, M., P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and
P. Stone, Half field offense: An environment for multiagent learning and ad hoc team-
work. In AAMAS Adaptive Learning Agents (ALA) Workshop. 2016.

26. Hausknecht, M. and P. Stone, Deep Reinforcement Learning in Parameterized Action
Space. In Proceedings of the 4th International Conference on Learning Representations
(ICLR-16). 2016.

27. Hausknecht, M. J. (2016). Cooperation and communication in multiagent deep rein-
forcement learning. Ph.D. thesis.

28. Haykin, S., Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1998, 2nd edition. ISBN 0132733501.

29. Heger, M., Consideration of risk in reinforcement learning. In Proceedings of the 11th
International Conference on Machine Learning. 1994.

30. Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, et al. (2012). Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6), 82–97.

62

31. Ho, J. and S. Ermon, Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems. 2016.

32. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural compu-
tation, 9(8), 1735–1780.

33. Intel-AI (2017). Intel reinforcement learning coach. https://github.com/
NervanaSystems/coach.

34. Investopedia (2017). Definition of tail risk. http://www.investopedia.com/
terms/t/tailrisk.asp. Accessed: 2017-09-11.

35. Kalyanakrishnan, S., Y. Liu, and P. Stone, Half field offense in robocup soccer: A
multiagent reinforcement learning case study. In Robot Soccer World Cup. Springer,
2006.

36. Karpathy, A. and M. Van De Panne (2012). Curriculum learning for motor skills.
Advances in Artificial Intelligence, 325–330.

37. Kingma, D. and J. Ba (2015). Adam: A method for stochastic optimization.
arXiv:1310.5107 [cs.CV].

38. Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. (2017). Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences, 201611835.

39. Knight, W. (2017). Alpha zero’s “alien” chess shows the power, and the pe-
culiarity, of ai. URL https://www.technologyreview.com/s/609736/
alpha-zeros-alien-chess-shows-the-power-and-the-peculiarity-of-ai/.

40. Konidaris, G. and A. G. Barto, Skill discovery in continuous reinforcement learning
domains using skill chaining. In Advances in Neural Information Processing Systems.
2009.

41. Kraemer, L. and B. Banerjee (2016). Multi-agent reinforcement learning as a rehearsal
for decentralized planning. Neurocomputing, 190, 82–94.

42. Krizhevsky, A., I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.
2012.

43. Kumar, M. P., B. Packer, and D. Koller, Self-paced learning for latent variable models.
In Advances in Neural Information Processing Systems. 2010.

44. LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. nature, 521(7553), 436.

45. Levine, S. and V. Koltun (2012). Continuous inverse optimal control with locally
optimal examples. arXiv preprint arXiv:1206.4617.

46. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, Continuous control with deep reinforcement learning. In Proceedings of
the 4th International Conference on Learning Representations (ICLR-16). 2016.

63

https://github.com/NervanaSystems/coach
https://github.com/NervanaSystems/coach
http://www.investopedia.com/terms/t/tailrisk.asp
http://www.investopedia.com/terms/t/tailrisk.asp
https://www.technologyreview.com/s/609736/alpha-zeros-alien-chess-shows-the-power-and-the-peculiarity-of-ai/
https://www.technologyreview.com/s/609736/alpha-zeros-alien-chess-shows-the-power-and-the-peculiarity-of-ai/

47. Liu, B., S. Singh, R. L. Lewis, and S. Qin, Optimal rewards in multiagent teams. In
Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International
Conference on. IEEE, 2012.

48. Loiacono, D., A. Prete, P. L. Lanzi, and L. Cardamone, Learning to overtake in torcs
using simple reinforcement learning. In Evolutionary Computation (CEC), 2010 IEEE
Congress on. IEEE, 2010.

49. Lowe, R., Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, Multi-agent actor-
critic for mixed cooperative-competitive environments. In Advances in Neural Infor-
mation Processing Systems. 2017.

50. Masson, W., P. Ranchod, and G. Konidaris, Reinforcement learning with parameter-
ized actions. In AAAI. 2016.

51. Matignon, L., G. J. Laurent, and N. Le Fort-Piat (2012). Independent reinforcement
learners in cooperative markov games: a survey regarding coordination problems. The
Knowledge Engineering Review, 27(1), 1–31.

52. Minsky, M. (1954). Theory of neural-analog reinforcement systems and its application
to the brain-model problem. Princeton University Ph. D. Ph.D. thesis, Dissertation.

53. Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning. 2016.

54. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540), 529–533.

55. Nagengast, A. J., D. A. Braun, and D. M. Wolpert (2010). Risk-sensitive optimal
feedback control accounts for sensorimotor behavior under uncertainty. PLoS compu-
tational biology, 6(7), e1000857.

56. Narvekar, S., J. Sinapov, M. Leonetti, and P. Stone, Source task creation for cur-
riculum learning. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2016.

57. Narvekar, S., J. Sinapov, and P. Stone, Autonomous task sequencing for customized
curriculum design in reinforcement learning. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI). 2017.

58. Ng, A. Y., A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang, Autonomous inverted helicopter flight via reinforcement learning. In Exper-
imental Robotics IX. Springer, 2006, 363–372.

59. Ng, A. Y., S. J. Russell, et al., Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning. 2000.

60. Oh, J., X. Guo, H. Lee, R. L. Lewis, and S. Singh, Action-conditional video prediction
using deep networks in atari games. In Advances in Neural Information Processing
Systems. 2015.

64

61. Omidshafiei, S., J. Pazis, C. Amato, J. P. How, and J. Vian, Deep decentralized multi-
task multi-agent reinforcement learning under partial observability. In International
Conference on Machine Learning. 2017.

62. Parisotto, E., J. L. Ba, and R. Salakhutdinov, Actor-mimic: Deep multitask and
transfer reinforcement learning. In Proceedings of the 4th International Conference
on Learning Representations (ICLR). 2016.

63. Pomerleau, D. A., Alvinn: An autonomous land vehicle in a neural network. In Ad-
vances in Neural Information Processing Systems. 1989.

64. Raileanu, R., E. Denton, A. Szlam, and R. Fergus (2018). Modeling others using
oneself in multi-agent reinforcement learning. arXiv preprint arXiv:1802.09640.

65. Rajeswaran, A., S. Ghotra, S. Levine, and B. Ravindran (2016). Epopt: Learning
robust neural network policies using model ensembles. 5th International Conference
on Learning Representations.

66. Rockafellar, R. T. and S. Uryasev (2000). Optimization of conditional value-at-risk.
Journal of risk, 2, 21–42.

67. Ross, S. and D. Bagnell, Efficient reductions for imitation learning. In Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics. 2010.

68. Ross, S. and J. A. Bagnell (2014). Reinforcement and imitation learning via interactive
no-regret learning. arXiv preprint arXiv:1406.5979.

69. Ross, S., G. J. Gordon, and D. Bagnell, A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In International Conference on Artificial
Intelligence and Statistics. 2011.

70. Schaal, S., Learning from demonstration. In Advances in Neural Information Process-
ing Systems. 1997.

71. Schmidt, R. A., T. D. Lee, et al., Motor control and learning: A behavioral emphasis,
volume 4. Human kinetics Champaign, IL, 2005.

72. Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy
optimization. In International Conference on Machine Learning. 2015.

73. Shah, S., D. Dey, C. Lovett, and A. Kapoor, Airsim: High-fidelity visual and phys-
ical simulation for autonomous vehicles. In Field and Service Robotics. 2017. URL
https://arxiv.org/abs/1705.05065.

74. Shalev-Shwartz, S., S. Shammah, and A. Shashua (2016). Safe, multi-agent, rein-
forcement learning for autonomous driving. arXiv preprint arXiv:1610.03295.

75. Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016). Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587),
484–489.

76. Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. (2017). Mastering chess and shogi by self-
play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

65

https://arxiv.org/abs/1705.05065

77. Silver, D., G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, Determin-
istic policy gradient algorithms. In ICML. 2014.

78. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations. 2015.

79. Stadie, B. C., P. Abbeel, and I. Sutskever (2017). Third-person imitation learning. 6th
International Conference on Learning Representations.

80. Sukhbaatar, S., R. Fergus, et al., Learning multiagent communication with backprop-
agation. In Advances in Neural Information Processing Systems. 2016.

81. Sutton, R. and A. Barto, Reinforcement Learning: An Introduction. A Bradford book.
Bradford Book, 1998. ISBN 9780262193986. URL https://books.google.
co.in/books?id=CAFR6IBF4xYC.

82. Tampuu, A., T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and
R. Vicente (2017). Multiagent cooperation and competition with deep reinforcement
learning. PloS one, 12(4), e0172395.

83. Tan, M., Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning. 1993.

84. Tesauro, G., Td-gammon: A self-teaching backgammon program. In Applications of
Neural Networks. Springer, 1995, 267–285.

85. Todorov, E., T. Erez, and Y. Tassa, Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on.
IEEE, 2012.

86. Tsitsiklis, J. N. and B. Van Roy, Analysis of temporal-difference learning with func-
tion approximation. In Advances in neural information processing systems. 1997.

87. Varaiya, P. (1993). Smart cars on smart roads: problems of control. IEEE Transactions
on automatic control, 38(2), 195–207.

88. Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, King’s
College, Cambridge.

89. Williams, R. J., Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. In Reinforcement Learning. Springer, 1992, 5–32.

90. Wymann, B., E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sum-
ner (2000). Torcs, the open racing car simulator. Software available at http://torcs.
sourceforge. net, 4.

91. Ziebart, B. D., A. L. Maas, J. A. Bagnell, and A. K. Dey, Maximum entropy inverse
reinforcement learning. In AAAI, volume 8. Chicago, IL, USA, 2008.

66

https://books.google.co.in/books?id=CAFR6IBF4xYC
https://books.google.co.in/books?id=CAFR6IBF4xYC

LIST OF PAPERS BASED ON THESIS

1. Santara, A.*, Naik, A.*, Ravindran, B., Das, D., Mudigere, D., Avancha, S., and

Kaul, B. RAIL: Risk-averse Imitation Learning To appear in the Proceedings of

the Seventeenth International Conference on Autonomous Agents and Multiagent

Systems (AAMAS) (Extended Abstract), (2018).

67

	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contributions
	Overview

	Background
	Deep Reinforcement Learning
	Deep Q-Networks
	DDPG
	GAIL
	Risk-sensitivity
	Half Field Offense Simulator
	Environment
	State and Action spaces

	Parameterized DDPG

	Risk-Averse Imitation Learning
	Motivation
	Related work
	Imitation Learning
	Risk-Sensitivity

	Methodology
	Derivation of gradients

	Experiments
	Results
	Discussion
	Conclusion and Future Work

	Multi-Agent Learning
	Motivation
	Related work
	Classical approaches
	Recent (and deep) approaches

	Methodology
	Experiments
	Results and discussion
	Development - MADRaS
	Motivation

	Future work

	Curriculum Learning
	Motivation
	Related work
	Classical Usage
	Task Generation
	Task Sequencing
	Incorporating Active Feedback

	Methodology
	Task Generation
	Task Sequencing
	Task Encoding

	Experiments
	Evaluation procedure
	Sanity check
	Soccer task
	Ablative analysis

	Conclusions and Future Work

	Summary and Conclusions
	The long-term goal

