FIGURING OUT How the mind works

At the Exciting Intersection of RL, Psychology, and Neuroscience

Abhishek Naik

WE ARE ALL STUDYING HOW THE BRAIN WORKS

Some RL and Psychology background

▶ The RL framework, TD learning, Blocking, Higher-order Conditioning

Some RL and Psychology background

The RL framework, TD learning, Blocking, Higher-order Conditioning

Connections between RL and Psychology

> TD model explains and predicts psychological phenomena

Some RL and Psychology background

The RL framework, TD learning, Blocking, Higher-order Conditioning

Connections between RL and Psychology

> TD model explains and predicts psychological phenomena

Some Neuroscience background

Action potentials, Dopamine

Some RL and Psychology background

- The RL framework, TD learning, Blocking, Higher-order Conditioning
- Connections between RL and Psychology
 - > TD model explains and predicts psychological phenomena

Some Neuroscience background

Action potentials, Dopamine

Connections between RL and Neuroscience

The Reward Prediction Error Hypothesis

Some RL and Psychology background

The RL framework, TD learning, Blocking, Higher-order Conditioning

Connections between RL and Psychology

> TD model explains and predicts psychological phenomena

Some Neuroscience background

Action potentials, Dopamine

Connections between RL and Neuroscience

The Reward Prediction Error Hypothesis

Where do we go from here?

• Opportunities for collaborations among all these disciplines

- Independent decisions
- Instructive feedback
- Immediate feedback

- Independent decisions
- Instructive feedback
- Immediate feedback

L

А

?

В

• • •

Ε

?

- Sequential decisions
- Evaluative feedback
- Delayed feedback

- Independent decisions
- Instructive feedback
- Immediate feedback

- Sequential decisions
- Evaluative feedback
- Delayed feedback

MOST REAL-WORLD TASKS ARE SEQUENTIAL IN NATURE

?

• • •

Ε

В

А

THE RL FRAMEWORK

THE RL FRAMEWORK

observation

THE RL FRAMEWORK

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{correct})$$

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{correct})$$
$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{better})$$

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{correct})$$
$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{better})$$
$$= P_{old} + \alpha(P_{better} - P_{old})$$

Update predictions to match later, more accurate, predictions about the future before the final outcome is known.

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{correct})$$

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{better})$$

$$= P_{old} + \alpha(P_{better} - P_{old})$$

 $V_{new}(s) = V_{old}(s) + \alpha(R + V_{old}(s') - V_{old}(s))$

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{correct})$$

$$P_{new} = (1 - \alpha)P_{old} + \alpha(P_{better})$$

$$= P_{old} + \alpha(P_{better} - P_{old})$$

$$V_{new}(s) = V_{old}(s) + \alpha (R + V_{old}(s') - V_{old}(s))$$

Credits: <u>Healthline</u>

BLOCKING

BLOCKING

BLOCKING

HIGHER-ORDER CONDITIONING

HIGHER-ORDER CONDITIONING

$$v_w(s) = \sum_i w_i x_i(s) = w^T x(s)$$

$$v_w(s) = \sum_i w_i x_i(s) = w^T x(s)$$

$$\begin{array}{cccc} x_1 & w_1 & & \\ x_2 & w_2 & \sum & \text{out} \\ x_N & w_N & & \\ \end{array}$$

$$v_w(s) = \sum_i w_i x_i(s) = w^T x(s)$$

$$\delta_t = R_{t+1} + v_w(S_{t+1}) - v_w(S_t)$$
$$w_{t+1} = w_t + \alpha \delta_t x_t$$

$$v_w(s) = \sum_i w_i x_i(s) = w^T x(s)$$

$$\delta_t = R_{t+1} + v_w(S_{t+1}) - v_w(S_t)$$
$$w_{t+1} = w_t + \alpha \delta_t x_t$$

The TD model explains blocking and higher-order conditioning

THE TD MODEL EXPLAINS BLOCKING

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

THE TD MODEL EXPLAINS BLOCKING

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_4 = R_5 + v_w(S_5) - v_w(S_4)$$
$$\delta_4 = 1 + 0 - w^T x_4$$
$$0 = 1 + 0 - (w_B \cdot 1)$$
$$\Rightarrow w_B = 1$$

THE TD MODEL EXPLAINS BLOCKING

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_{4} = R_{5} + v_{w}(S_{5}) - v_{w}(S_{4})$$

$$\delta_{4} = 1 + 0 - w^{T}x_{4}$$

$$0 = 1 + 0 - (w_{B} \cdot 1)$$

$$\Rightarrow w_{B} = 1$$

THE TD MODEL EXPLAINS BLOCKING

$$\delta_t = R_{t+1} + v_w(S_{t+1}) - v_w(S_t)$$

THE TD MODEL EXPLAINS BLOCKING

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_4 = 1 + 0 - w^T x_4$$

$$0 = 1 + 0 - (w_A 1 + w_B 1)$$

$$w_A + w_B = 1$$

THE TD MODEL EXPLAINS BLOCKING

$$\delta_t = R_{t+1} + v_w(S_{t+1}) - v_w(S_t)$$

$$\delta_4 = 1 + 0 - w^T x_4$$

$$0 = 1 + 0 - (w_A 1 + w_B 1)$$

$$w_A + w_B = 1$$

But
$$w_B = 1$$

 $\implies w_A = 0$

THE TD MODEL EXPLAINS BLOCKING

 $\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$

$$\delta_4 = 1 + 0 - w^T x_4$$

$$0 = 1 + 0 - (w_A 1 + w_B 1)$$

$$w_A + w_B = 1$$

But
$$w_B = 1$$

 $\implies w_A = 0$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_4 = 1 + 0 - w^T x_4$$
$$0 = 1 + 0 - (w_B \cdot 1)$$
$$\implies w_B = 1$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_2 = 0 + w^T x_3 - w^T x_2$$
$$0 = 0 + (w_B 1) - (w_A 1)$$
$$\Rightarrow w_A = w_B$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_2 = 0 + w^T x_3 - w^T x_2$$
$$0 = 0 + (w_B 1) - (w_A 1)$$
$$\Rightarrow w_A = w_B$$

$$\delta_4 = 0 + 0 - w^T x_4$$
$$0 = 0 + 0 - (w_B 1)$$
$$\Rightarrow w_B = 0$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_2 = 0 + w^T x_3 - w^T x_2$$
$$0 = 0 + (w_B 1) - (w_A 1)$$
$$\Rightarrow w_A = w_B$$

$$\delta_4 = 0 + 0 - w^T x_4$$
$$0 = 0 + 0 - (w_B 1)$$
$$\Rightarrow w_B = 0$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

Only CSB is trained:

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

Only CSB is trained:

$$\delta_4 = 1 + 0 - w^T x_4$$
$$0 = 1 + 0 - (w_B \cdot 1)$$
$$\Rightarrow w_B = 1$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_4 = 1 + 0 - w^T x_4$$

0 = 1 + 0 - (w_A 1 + w_B 1)
> w_A + w_B = 1

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\delta_{4} = 1 + 0 - w^{T} x_{4}$$

$$0 = 1 + 0 - (w_{A} 1 + w_{B} 1)$$

$$\Rightarrow w_{A} + w_{B} = 1$$

$$\delta_{2} = 0 + w^{T} x_{3} - w^{T} x_{2}$$

$$0 = 0 + (w_{B} 1 + w_{A} 1) - (w_{A} 1)$$

$$\Rightarrow w_{B} = 0$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

$$\begin{split} \delta_4 &= 1 + 0 - w^T x_4 \\ 0 &= 1 + 0 - (w_A 1 + w_B 1) \\ \Rightarrow & w_A + w_B = 1 \\ \delta_2 &= 0 + w^T x_3 - w^T x_2 \\ 0 &= 0 + (w_B 1 + w_A 1) - (w_A 1) \\ \Rightarrow & w_B = 0 \end{split}$$

$$\delta_{t} = R_{t+1} + v_{w}(S_{t+1}) - v_{w}(S_{t})$$

Now CSA is introduced before the onset of CSB:

$$\begin{split} \delta_4 &= 1 + 0 - w^T x_4 \\ 0 &= 1 + 0 - (w_A 1 + w_B 1) \\ \Rightarrow & w_A + w_B = 1 \\ \delta_2 &= 0 + w^T x_3 - w^T x_2 \\ 0 &= 0 + (w_B 1 + w_A 1) - (w_A 1) \\ \Rightarrow & w_B = 0 \end{split}$$

This predicted phenomenon was later confirmed by Kehoe, Schreurs, and Graham (1987).

TAKEAWAY

The TD model not only explains a variety of psychological phenomena, but also predicted some new phenomena.

SOME NEUROSCIENCE BACKGROUND

NEURONS, SYNAPSES, DOPAMINE

Credits: Khan Academy, Wikipedia

Schultz et al. (1997)

BEYOND CORRELATION – SOME CAUSAL EVIDENCE

BEYOND CORRELATION – SOME CAUSAL EVIDENCE

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013). A causal link between prediction errors, dopamine neurons and learning. *Nature neuroscience*, *16*(7), 966.

redits: <u>Cosmos</u>

Dopamine drives learning.

What theories and results from Psychology and Neuroscience can help in building the computational model of the mind?

- What theories and results from Psychology and Neuroscience can help in building the computational model of the mind?
 - How does the brain construct a representation from the perception, before action? Is there even a separation?

- What theories and results from Psychology and Neuroscience can help in building the computational model of the mind?
 - How does the brain construct a representation from the perception, before action? Is there even a separation?
 - How does the brain encode, retrieve, and combine knowledge of different kinds, learned at different times? How does memory work?

- What theories and results from Psychology and Neuroscience can help in building the computational model of the mind?
 - How does the brain construct a representation from the perception, before action? Is there even a separation?
 - How does the brain encode, retrieve, and combine knowledge of different kinds, learned at different times? How does memory work?
 - How are high-level actions performed by combining low-level muscle-twitches? Is there some sort of hierarchical and modular arrangement of actions?

REFERENCES

- Kehoe, E. J., Schreurs, B. G., & Graham, P. (1987). Temporal primacy overrides prior training in serial compound conditioning of the rabbit's nictitating membrane response. Animal Learning & Behavior, 15(4), 455-464.
- Ludvig, E. A., Bellemare, M. G., & Pearson, K. G. (2011). A primer on reinforcement learning in the brain: Psychological, computational, and neural perspectives. Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications, 111-144.
- Schultz, W., Dayan, P., Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306):1593–1598.
- Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013). A causal link between prediction errors, dopamine neurons and learning. *Nature Neuroscience*, 16(7), 966.
- Sutton, R. S., Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement. Learning and Computational Neuroscience: Foundations of Adaptive Networks, 497-537.
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.