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▸ Some Neuroscience background 
▸ Action potentials, Dopamine

▸ Connections between RL and Neuroscience 
▸ The Reward Prediction Error Hypothesis

▸ Where do we go from here? 
▸ Opportunities for collaborations among all these disciplines
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MOST REAL-WORLD TASKS ARE SEQUENTIAL IN NATURE
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TEMPORAL-DIFFERENCE (TD) LEARNING
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TEMPORAL-DIFFERENCE (TD) LEARNING

▸ When will University life go back to normal? 

▸ March 1: maybe a week? 

▸ March 3: two weeks 

▸ March 7: two weeks 

▸ March 13: a month? 

▸ March 20: 3 months?! 

▸ March 25: 6 months?!?! 

Pnew = (1 − α)Pold + α(Pbetter)

▸ Update predictions to match later, more accurate, predictions 
about the future before the final outcome is known.

Pnew = (1 − α)Pold + α(Pcorrect)

= Pold + α(Pbetter−Pold)

δ

V(St) = V(St) + α(Rt+1 + V(St+1) − V(St))

Vnew(s) = Vold(s) + α(R + Vold(s′ )−Vold(s))



CLASSICAL CONDITIONING

Credits: Healthline

(US)

(CS)

https://www.google.com/url?sa=i&url=https://www.healthline.com/health/classical-conditioning&psig=AOvVaw1MDGgEEjTJyXTIamIVqXxz&ust=1585077434174000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCODEr-KnsegCFQAAAAAdAAAAABAf
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CLASSICAL CONDITIONING

THE TD MODEL

▸ The TD model explains blocking and higher-order conditioning

vw(s) = ∑
i

wixi(s) = wT x(s)

δt = Rt+1 + vw(St+1)−vw(St)
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CLASSICAL CONDITIONING

THE TD MODEL PREDICTS THE REVERSAL OF BLOCKING

0 21 3 4 5

Now CSA is introduced 
before the onset of CSB:

δ2 = 0 + wT x3 − wT x2

0 = 0 + (wB1 + wA1) − (wA1)
⟹ wB = 0

δ4 = 1 + 0 − wT x4

0 = 1 + 0 − (wA1 + wB1)
⟹ wA+wB = 1wB

▸ This predicted phenomenon was later confirmed by  
Kehoe, Schreurs, and Graham (1987).

δt = Rt+1 + vw(St+1)−vw(St)



TAKEAWAY

The TD model not only explains a 
variety of psychological phenomena, 

but also predicted some new 
phenomena.



SOME NEUROSCIENCE BACKGROUND

Credits: Khan Academy, Wikipedia 

NEURONS, SYNAPSES, DOPAMINE

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-synapse
https://en.wikipedia.org/wiki/Synapse#/media/File:SynapseSchematic_lines.svg
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Credits: Cosmos

https://cosmosmagazine.com/biology/optogenetics-understanding-the-brain-one-flash-of-light-at-a-time


BEYOND CORRELATION – SOME CAUSAL EVIDENCE

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013).  
A causal link between prediction errors, dopamine neurons and learning. Nature neuroscience, 16(7), 966.

Credits: Cosmos

https://cosmosmagazine.com/biology/optogenetics-understanding-the-brain-one-flash-of-light-at-a-time


TAKEAWAY

Dopamine drives learning.
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WHERE DO WE GO FROM HERE?

▸ What theories and results from Psychology and Neuroscience 
can help in building the computational model of the mind? 

▸ How does the brain construct a representation from the 
perception, before action? Is there even a separation?

▸ How does the brain encode, retrieve, and combine 
knowledge of different kinds, learned at different times?  
How does memory work? 

▸ How are high-level actions performed by combining  
low-level muscle-twitches? Is there some sort of 
hierarchical and modular arrangement of actions?
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