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CONTINUING PROBLEMS
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RECAP: EPISODIC PROBLEMS
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right

?



TIME SPANS OF DECISIONS’ CONSEQUENCES  
ARE BOUNDED IN EPISODIC PROBLEMS

… St−k … St−1 At−1 Rt St At Rt+1 St+1 At+1 … St+n …

And no credit assignment occurs across episodic boundaries.

‘Resets’ don’t really exist in life…

action

observation

reward



CONTINUING PROBLEMS

s1 s2 s3 T

… St−k … St−1 At−1 Rt St At Rt+1 St+1 At+1 … St+n …



ASIDE: IMPORTANT DISTINCTIONS WITH  
SIMILAR-SOUNDING TERMS

▸ Continual / never-ending / lifelong learning:  
 

▸ Non-stationarity is orthogonal to the episodic or continuing nature of the 
agent-environment interaction. 

▸ Continuing problems can have non-stationary aspects. 

▸ Continuous problems:  

▸ Continuing problems can have continuous state/action spaces.

emphasizes a learning agent’s continual need to adapt to a  
non-stationary world.

have continuous state and/or action spaces



CONTINUING PROBLEMS: FORMULATIONS
S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

max
π

∞

∑
t

Rt

γ ∈ [0,1)

max
π

r(π)

r(π) ≐ lim
n→∞

1
n

𝔼π[
n

∑
t=1

Rt]
vγ

π(s) ≐ 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s]

Rt+1 + γRt+2 + γ2Rt+3 + …

max
π

vγ
π(s), ∀s

Average-Reward FormulationDiscounted-Reward Formulation
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DISCOUNTED-REWARD FORMULATION
S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

max
π

∞

∑
t

Rt

γ ∈ [0,1)

vγ
π(s) ≐ 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s]

max
π

vγ
π(s), ∀s

qγ
π(s, a) ≐ 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s, At = a]

π*γ →

π*γ (s) = arg max
a

qπ*γ (s, a)



THE BEST POLICY  
DEPENDS ON THE DISCOUNT FACTOR

▸    : left

▸  : right

π*γ=0

π*γ=0.9



A USEFUL THEOREM

In any finite MDP, there exists a discount factor  such that  
, -optimal policies are also average-reward-optimal. 

γ* ∈ [0,1)
∀γ ≥ γ* γ

γ*

That is,  maximizes the average reward for all .π*γ γ ≥ γ*

Blackwell, 1962; Grand-Clément & Petrik, 2023

So just set a “high” value for ?γ
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THE MAIN ISSUE

The discounted objective is not well-defined  
for the problem setting of  

continuing control with function approximation.

max
π

vγ
π(s), ∀s



IN GENERAL, POLICIES ARE NOT COMPARABLE  
IN TERMS OF THE DISCOUNTED OBJECTIVE

All policies

π*π*

✱

⭘

⭘
⭘

⭘
⭘ ⭘

⭘

⭘ ⭘
⭘⭘

⭘

⭘

⭘

⭘⭘

vπa
(1) > vπb

(1)
vπa

(2) > vπb
(2)

vπa
(3) < vπb

(3)
vπa

(4) < vπb
(4)

πaWhich is better: or πb ?



IN THE TABULAR SETTING, 
THE POLICY IMPROVEMENT THEOREM HELPS

π*π*

✱

⭘

⭘
⭘

⭘
⭘ ⭘

⭘

⭘ ⭘
⭘⭘

⭘

⭘

⭘

⭘⭘
Start from any policy and  

eventually learn the optimal policy

π0 π1 π2 π*

The lack of comparability does not matter



WITH FUNCTION APPROXIMATION…

π*π*

✱

⭘

⭘
⭘

⭘

⭘

⭘⭘
⭘

All policies Representable 
policies

⭘⭘

▸ The optimal/best policy is not 
representable under approximation. 

▸ So we aim for the best 
representable policy. 

▸ For that, we need to quantify the 
quality of a policy. vπ1

(1) > vπ2
(1)

vπ1
(2) > vπ2

(2)
vπ1

(3) < vπ2
(3)

vπ1
(4) < vπ2

(4)

⭘⭘
⭘ ⭘⭘

⭘

The standard optimality criterion 
in the discounted formulation  
does not rank-order policies.

Can we fix this issue?



RANKING POLICIES

O
bj

ec
tiv

e 
fu

nc
tio

n 
⟶

✱

⭘

⭘

⭘

⭘

✚ — Optimal 
representable 
policy

— Optimal 
policy ▸ Can convert the vector to a scalar.  

 
 
 
 

▸ What distributions can we use for averaging? 

▸ start-state distribution? 

▸ on-policy distribution?

vγ
π(1)

vγ
π(2)

vγ
π(3)

vγ
π(4)
} J(π)⭘



ON-POLICY DISTRIBUTION  
OVER THE DISCOUNTED VALUE FUNCTION…

… is equivalent to the average-reward objective!

Section 10.4, Sutton & Barto (2018)



THE PROBLEM SPECIFICATION DOES NOT INVOLVE GAMMA

r(π1) > r(π2) ⟹ J(π1) > J(π2) ∀γ

J(π) = ∑
s

μπ(s) vγ
π(s) =

r(π)
1 − γ

that is,  does not play a role in the problem definition.γ



RECALL:  
DIFFERENCE BETWEEN PROBLEM AND SOLUTION METHODS

∑
s

μπ(s) vγ
π(s) =

r(π)
1 − γ

max
π

∞

∑
t

Rt
Find a policy that  

maximizes total reward

max
π

vγ
π(s), ∀s

Maximize the discounted sum  
of rewards from each state

Maximize the discounted sum  
of rewards averaged over each state

Maximize the  
average reward

r(π)

≡

Q-learning,  
Sarsa, …

Problem

Differential Q-learning,  
Differential Sarsa, …

Solution  
methods



TAKEAWAYS SO FAR

▸ “Continuing control with function approximation”  
is an important problem setting for AI. 

▸ The policy-improvement theorem does not hold  
with function approximation. 

▸ As a result, the standard discounted objective  
is not well-defined in this problem setting. 
 

▸ The on-policy average of the discounted value function is sensible way 
to rank-order policies. It is equivalent to the average-reward objective.

Naik, Shariff, Yasui, Yao, Sutton (2019). Discounted RL is not an Optimization Problem. OptRL workshop at NeurIPS.
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THE AVERAGE-REWARD FORMULATION

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

ṽπ(s) ≐ 𝔼π[Rt+1 − r(π) + Rt+2 − r(π) + … |St = s]
vγ

π(s) ≐ 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s]

r(π) ≐ lim
n→∞

1
n

𝔼π[
n

∑
t=1

Rt]Average Reward

Differential 
value function How is this finite?

max
π

∞

∑
t

Rt



IF THE REWARDS ARE BOUNDED, THE AVERAGE REWARD IS FINITE

|Ri | < k ∈ ℝ+

𝔼[Ri] < k

⟹
1
n

𝔼[
n

∑
i=1

Ri] < k

𝔼[
n

∑
i=1

Ri] < nk

lim
n→∞

𝔼[
n

∑
i=1

Ri] → ∞

𝔼[A + B] = 𝔼[A] + 𝔼[B]

i.e., the average reward is finite

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …



|Ri | < k ∈ ℝ+

If  Ri ∼ U(−k, k)

𝔼[Ri] = 0

𝔼[
n

∑
i=1

Ri] = 0

If  Ri ∼ N(0, σ2)

𝔼[Ri] = 0

𝔼[
n

∑
i=1

Ri] = 0

If all the random variables have zero mean,  
then the sum of the random variables also has zero mean. 

|Ri | < k ∈ ℝ+

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …



THE DIFFERENTIAL VALUE FUNCTION IS FINITE

𝔼[Ri] = r̄i

𝔼[Ri] − r̄i = 0

𝔼[Ri − r̄i] = 0

𝔼[∑
i

(Ri − r̄i)] = 0

r̄i = r̄ ∀ i
under the assumption of ergodicity

μ(s) ≐ lim
t→∞

Pr(St = s |A0:t−1 ∼ π) exists

∑
s

μ(s)∑
a

π(a |s)∑
s′￼

p(s′￼|s, a) = μ(s′￼)

|Ri | < k ∈ ℝ+

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …



ESTIMATING THE AVERAGE REWARD FROM DATA
R1 R2 R3 … Rt−1 Rt Rt+1 …

R̄t+1 ≐ R̄t + βt (Rt+1 − R̄t)

R̄t ≐
1
t

t

∑
i=1

Ri

R̄t+1 ≐ R̄t +
1

t + 1 (Rt+1 − R̄t)

r(π) = ∑
s

μπ(s)∑
a

π(a |s)∑
r

p(r |s, a) r

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

R̄∞ → r(π) R̄∞ → r(b)

Off-policy?

With ρt ≐
π(At |St)
b(At |St)

R̄∞ ↛ r(b)
R̄∞ ↛ r(π)

R̄t+1 ≐ R̄t + βt δt R̄∞ → r(π)If thenr(b) = ∑
s

μb(s)∑
a

b(a |s)∑
r

p(r |s, a) r



ESTIMATING THE VALUES FROM DATA

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

qγ
*(s, a) = ∑

s′￼,r

p(s′￼, r |s, a)[r + γ max
a′￼

qγ
*(s′￼, a′￼)]

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 + γ max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]
δγ

t

Discounted Q-learning

q̃*(s, a) = ∑
s′￼,r

p(s′￼, r |s, a)[r − r̄ + max
a′￼

q̃*(s′￼, a′￼)]

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Diff

δt

qγ
π(s, a) ≐ 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s, At = a] q̃π(s, a) ≐ 𝔼π[Rt+1 − r(π) + Rt+2 − r(π) + … |St = s, At = a]

R̄t+1 ≐ R̄t + βt δt



ESTIMATING THE AVERAGE REWARD FROM DATA

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

= ∑
s′￼,r

p(s′￼, r ∣ s, a)[rq̃*(s, a) + max
a′￼

q̃*(s′￼, a′￼) ]− r̄
Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + max

a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Diff

δt
R̄t+1 ≐ R̄t + βt δt



ESTIMATING THE AVERAGE REWARD FROM DATA

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

= ∑
s′￼,r

p(s′￼, r ∣ s, a)[rq̃*(s, a) + max
a′￼

q̃*(s′￼, a′￼) ]− r̄
Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + max

a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Diff

δt
R̄t+1 ≐ R̄t + βt δt



ESTIMATING THE AVERAGE REWARD FROM DATA

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

= ∑
s′￼,r

p(s′￼, r ∣ s, a)[r q̃*(s, a)+ max
a′￼

q̃*(s′￼, a′￼) ]−r̄
Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + max

a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Diff

δt
R̄t+1 ≐ R̄t + βt δt



ESTIMATING THE AVERAGE REWARD FROM DATA

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

= ∑
s′￼,r

p(s′￼, r ∣ s, a)[r q̃*(s, a)+ max
a′￼

q̃*(s′￼, a′￼) ]−r̄

R̄t+1 ≐ R̄t + βt (Rt+1 + max
a′￼

Qt(St+1, a′￼) − Qt(St, At) − R̄t)

δt

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Diff

δt
R̄t+1 ≐ R̄t + βt δt



THE TWO ALGORITHMS LOOK QUITE SIMILAR
S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Diff

δt
R̄t+1 ≐ R̄t + βt δt

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 + γ max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]
δγ

t

Discounted Q-learning

Wan*, Naik*, & Sutton. (2021). Learning and Planning in Average-Reward Markov Decision Processes. ICML.

The algorithms are very similar implementation-wise;  
the theoretical analysis is significantly different



ADVANCED ALGORITHMS
▸ Hierarchical learning via options 

▸ Differential intra-option, inter-option, interruption algorithms. 

▸ Proved to converge in the tabular setting. 
 
 

▸ More efficient learning algorithms 

▸ Multi-step TD( )-style algorithms with eligibility traces. 

▸ Proved to converge with linear function approximation.

λ

Wan, Naik, Sutton (2021). Average-Reward Learning and Planning with Options. NeurIPS.

Naik & Sutton (2022). Multi-Step Average-Reward Prediction via Differential TD( ). RLDM.λ
Naik (2024). Reinforcement Learning in Continuing Problems using Average Reward. Ph.D. dissertation.
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THE MAIN MESSAGE

by estimating the average reward 
and subtracting it from the observed rewards.

The performance of standard discounted-reward methods  
such as TD-learning or Q-learning  

can be significantly improved 

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 + γ max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]

Qt+1(St, At) ≐ Qt(St, At) + αt[Rt+1 − R̄t + γ max
a′￼

Qt(St+1, a′￼) − Qt(St, At)]



NO INSTABILITY WITH LARGE DISCOUNT FACTORS

AccessControl (tabular)



NO INSTABILITY WITH LARGE DISCOUNT FACTORS

PuckWorld (linear FA)

Q-learning with reward centering



NO INSTABILITY WITH LARGE DISCOUNT FACTORS

Pendulum (non-linear FA)



TRENDS ARE CONSISTENT ACROSS PARAMETERS

Q-learning Q-learning with reward centering

η = 1/256η = 1/16η = 1

AccessControl (tabular)



UNDERLYING THEORY

vγ
π(s) ≐ 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s] = 𝔼π[

∞

∑
k=0

γkRt+k+1 |St = s]

Rt+1 Rt+2 Rt+3 … Rt+n …

Standard discounted 
value function

=
r(π)
1 − γ

+ + eγ
π(s)vγ

π(s) ṽπ(s)

r(π) ≐ lim
n→∞

1
n

𝔼π[
n

∑
t=1

Rt]
Differential 

value function

Average reward

ṽπ(s) ≐ 𝔼π[Rt+1 − r(π) + Rt+2 − r(π) + … |St = s]



INTUITION 
THROUGH AN EXAMPLE

r(π) = 1

+3

A

B C

=
r(π)
1 − γ

+ + eγ
π(s)vγ

π(s) ṽπ(s)

Centered discounted 
value function

ṽγ
π(s) ≐ 𝔼π[

∞

∑
k=0

γk(Rt+k+1 − r(π)) |St = s] = −
r(π)
1 − γ

vγ
π(s)

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

Centered 
discounted values

Standard 
discounted values

Differential values

5

r(π)
1 − γ

10
100



ESTIMATING  r(π)

R̄t+1 ≐ R̄t + βt(Rt+1 − R̄t)

R̄t+1 ≐ R̄t + βt δt

On-policy

Off-policy

where δt ≐ Rt+1 − R̄t + γVt(St+1) − Vt(St)

S0 A0 R1 S1 A1, R2… St At Rt+1 St+1 At+1 Rt+2 …



MORE ROBUST TO SHIFTED REWARDS

Q-learning
γ = 0.9

AccessControl (tabular)

η = 1/256

Q-learning with reward centering

η = 1/16η = 1

vγ
π(s) =

r(π)
1 − γ

+ ṽπ(s) + eγ
π(s)



TAKEAWAYS
▸ Reward centering can improve the performance of 

discounted methods for all discount factors, especially as 
. 

▸ Reward centering can also make discounted methods 
robust to shifts in the problems’ rewards. 

▸ Both techniques of centering are quite effective; using the 
TD error is more appropriate for the off-policy setting.  

γ → 1

Analysis, more experiments, etc.: 
Naik, Wan, Tomar, & Sutton. (2024). Reward Centering. Reinforcement Learning Conference.

▸ Additional non-stationarity;  
step-size adaptation would help! 

▸ Should be combined with 
techniques for reward scaling 

▸ Unlocks algorithms in which the 
discount factor can be efficiently 
adapted over time

Every RL algorithm will benefit with reward centering!

https://arxiv.org/abs/2405.09999

https://arxiv.org/abs/2405.09999
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THANK YOU
Questions?

abhisheknaik22296@gmail.com
abhisheknaik96.github.io

mailto:abhisheknaik22296@gmail.com
https://abhisheknaik96.github.io/

