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PROBLEM SETTING
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RECAP: EPISODIC PROBLEMS




TIME SPANS OF DECISIONS™ CONSEQUENCES
ARE BOUNDED IN EPISODIC PROBLEMS

A0k e O A Ry Sy Ay Ry Sppr At -+ S| -+

And Nno credit assignment occurs across episodic boundaries.

‘Resets’ don’t really exist in life...




CONTINUING PROBLEMS
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ASIDE: IMPORTANT DISTINCTIONS WITH
SIMILAR-SOUNDING TERMS

» Continual / never-ending / lifelong learning:

emphasizes a learning agent’s continual need to adapt to a
non-stationary world.

» Non-stationarity is orthogonal to the episodic or continuing nature of the
agent-environment interaction.

» Continuing problems can have non-stationary aspects.

» Continuous problems:

have continuous state and/or action spaces
» Continuing problems can have continuous state/action spaces.



CONTINUING PROBLEMS: FORMULATIONS

S0 Ag Ry 01 A Ry 5 Ap Ry Sy Aryy Rigp -

O
max Z R,
" [

Discounted-Reward Formulation

max v.(s), Vs
T

Average-Reward Formulation

Mm= = [) R]
ViI(s) = E Ry + YR p + V7R3 + ... | S, = 5] n =1




O

~ W DN

OUTLINE

Problem setting

. The discounted-reward formulation
. I'he main issue with discounting
. I'he average-reward formulation

. Connections: improving discounted methods
using average reward



DISCOUNTED-REWARD FORMULATION
S0 Ag By Sy A By 5 Ay Ry Sip1 Ay Bigp -
max iRt

Jl';k — mj‘;lx VI(s), Vs y € [0,1)

vi(s) = E [R 1 + VR »+ 7’th+3 + ... 15, = 5]

(s, a) = E,[R. 1 + YR, + 72Rt+3 +...15,=s,A,=da]

7y (s) = arg mjx qﬂ;k(s, a)



THE BEST POLICY
DEPENDS ON THE DISCOUNT FACTOR
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A USEFUL THEOREM

Blackwell, 1962; Grand-Clément & Petrik, 2023

In any finite MDP, there exists a discount factor y* &€ [0,1) such that
Vy > v*, y-optimal policies are also average-reward-optimal.

That is, 77 maximizes the average reward for all y > y*.

SO just set a “high” value for y?
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THE MAIN ISSUE

max Vv.(s), Vs
T

The discounted objective Is not well-defined
for the problem setting of



IN GENERAL, POLICIES ARE NOT COMPARABLE
IN TERMS OF THE DISCOUNTED OBJECTIVE

m v, (1) > v, (1)

v, (2) > v, (2)

v, (3) < v, (3)
v, (4) <v,(4)

All policies =—»

Which Is better: T, or T, ?



IN THE TABULAR SETTING,
THE POLICY IMPROVEMENT THEOREM HELPS

ﬂ0—>ﬂ1—>ﬂ2 ........... »ﬂ*

Start from any policy and
eventually learn the optimal policy

The lack of comparabllity does not matter



WITH FUNCTION APPROXIMATION. . .

All policies

Representable
policies

» The optimal/best policy is not

representable under approximation.

» SO we aim for the best
representable policy.

» For that, we need to quantify the
quality of a policy.

The standard optimal

IN the dIsSco
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Can we fix this issue?
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v, (1) > v, (1)
v, (2) > v, (2)
v, (3) < v, (3)
v, (4) < v, (4)



Objective function —
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RANKING POLICIES

— Optimal

policy

— Optimal
representable
policy

» Can convert the vector to a scalar.

V(1)
v2(2)
vz(3)
Va(4)

J(7)

» What distributions can we use for averaging?
» start-state distribution?

» on-policy distribution??



ON-POLICY DISTRIBUTION
OVER THE DISCOUNTED VALUE FUNCTION. . .

J(r) = Z 1 (8)02(s) (where v7 is the discounted value function)
— Z 1 (S Zw als) ZZ p(s',r|s,a) [r + v (s")] (Bellman Eq.)
=r(m) + Z pre () Z w(als) L Lp(s r|s,a)yvy(s’)  (from (10.7))
= r(7) + 'yz;zﬂ Zﬂw Zn als)p(s'|s, a) (from (3.4))

r(m) +v Y vl(s )un(s) (from (10.8))

r(m) +~J(m)
r(m) +r(m) +°J(7)
= r(7) + yr(n) + ¥r(w) + r(x) + - - -

1
=1 77‘(77).

Section 10.4, Sutton & Barto (2018)

... IS equivalent to the average-reward objective!



THE PROBLEM SPECIFICATION DOES NOT INVOLVE GAMMA

(7)
—Y

I = Y, s vils) =

r(m) > r(m,) = J(my) > J(m,) Vy

that Is, ¥ does not play a role in the problem definition.



RECALL:
DIFFERENCE BETWEEN PROBLEM AND SOLUTION METHODS

. . o0

F!nq a policy that max Z R Problem
maximizes total reward i d
t
Maximize the discounted sum Maximize the discounted sum —  Maximize the
of rewards from each state of rewards averaged over each state —  average reward
r(z
max Vv.(s), Vs Z U () VI(s) = @) r(7)
s - 1 —y

Q-learning, Differential Q-learning, Solution

Sarsa, ... Differential Sarsa, ... methods




“Continuing control with function approximation”
IS an iImportant problem setting for Al.

The policy-improvement theorem does not hold
with function approximation.

As a result, the standard discounted objective
IS not well-defined in this problem setting.

The on-policy average of the discounted value function is sensible way
to rank-order policies. It Is equivalent to the average-reward objective.
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THE AVERAGE-REWARD FORMULATION

O
max Z R,
" [

S0 Ao Ky 51 A Ry... 5 Ap Ry 8441 Ay Ry -

n—-oo N

Average Reward - F (71') = lim l — ﬂ[ Z Rt]
=1

Diff tial ~ =~ = _ o
valtzeefruer?clt?on - vit(S) T n[Rt+1 T 7‘(71') 1 Rt+2 — 7'(71') + ... ‘St — S] How is this finite?

Vz};(s) = E (R + YR+ 72Rt+3 T ... ‘St = 5]




IF THE REWARDS ARE BOUNDED, THE AVERAGE REWARD IS FINITE

S0 Ao Ky 51 ARy 50 Ay Ry S Ay Ry -

|IR| <keERT
[R] <k
—[ZRi] < nk E[A + B] = E[A] + E[B]
=1
lim E[ )’ R] — oo o
n— oo 1 —> __[ZRi] <k
nooa=

.e., the average reward Is finite



_[Ri] =0

f R, ~ U(—k, k) ' /

|R| <k€RT

f R, ~ N(0, %)
_[Ri] =0

[Se)-0 )

—[ZRZ.] = (



THE DIFFERENTIAL VALUE FUNCTION IS FINITE

S0 Ao Ky 51 ARy 50 Ay Ry S Ay Ry -

‘Rl“ <keR™
“[R; =1, r,=r VI
C[R]1—7 =0 under the assumption of ergodicity
! l
_[Ri o ’71’] =0 'M(S) B tliIg) Pr(Sf - ‘AO:t—l ~ JT)  exists

'[Z(R"”')] ) D )Y nals) Y ps'|s.a) = u(s)



ESTIMATING THE AVERAGE REWARD FROM DAIA

R R, Ry ... R_, R R,
1§
R =— Z R,
=1
_ | _ |
R =R+ (Rt+1 — Rt) Off-policy?
t+ 1
Roo_”’(ﬂ) Rt+1_R +f, (R — R) Rm_)r(b)

new_estimate = old_estimate + stepsize* (new_target - old_estimate)

ﬂ(At‘Sz) Roo 7> F(b)
Hm) = ) pus) Y alals) ) p(rls,a)r

With p, = _
r(b) = Z /“tb(S) Z b(als) Zp(r‘s, a) r f Rt+1 = Rt + :Bt 5t then Roo — (1)

b(At ‘ Sz) ROO > I’(il')



ESTIMATING THE VALUES FROM DAIA

S0 Ag Ry 01 Ap Ry 8y Ay Ry Siyy A Ry -

q.(s,a) =E_[R_;+ 7R .+ ;/th+3 S =5,A, =d] g.s,a) =E_[R,,—r(m)+ R ,—r(m)+...|S, =s,A, =d]
ql(s,a) = Zp(s’, r|s,a) [r + y max g/(s’, a’)] g«(s,a) = Zp(s’, r|s,a) [r — 7+ max g(s’, a’)]
s’ r ! s’ r .

Discounted Q-learning Differential Q-learning
Q11055 A4) = O[S, A) + a [Rt+1 + y max Qi(Spy1.a’) — OLS,, At)] Q11055 A) = O[S, A) + o [Rt+1 — R, + DL Qi(Spy1,a’) — OLS,, At)]
57 5,

Rt+1 =R, + 5,6,

new_estimate = old_estimate + stepsize* (new_target - old_estimate)



ESTIMATING THE AVERAGE REWARD FROM DAIA

SyAyR, S;A,R,... S AR, S. A R, ..

1 M+l <41

Differential Q-learning

g«(s,a) = Zp(s’, r|s,a) [r — 7 + max q+(s’, a’)]
a

s'.r

Q105 A) = O[5, A) + a, [Rt+1 — Rt + AL O(S:41,a") — OLS;; At)]

0,
Ri =R+ p, 0

new_estimate = old_estimate + stepsize* (new_target - old_estimate)



ESTIMATING THE AVERAGE REWARD FROM DAIA

SyAyR, S;A,R,... S AR, S. A R, ..

1 M+l <41

Differential Q-learning

_ g«(s,a) = ) p(s,,r|s,a)|r + max g.(s,a’) |[—F
Qi105,A4) = Q(5,A4) + [Rt+1 — R, + max QS1,a) — OS5, At)] 7 (5, a) ; [ a’ ]

0,
Ri =R+ p, 0

new_estimate = old_estimate + stepsize* (new_target - old_estimate)



ESTIMATING THE AVERAGE REWARD FROM DAIA

SyAyR, S;A,R,... S AR, S. A R, ..

1 M+l <41

Differential Q-learning

_ r =) p(s,r|s,a)lr+ max g.(s’,a’) | — g«(s,a)
Q1055 4,) = O[5, A) + ¢ [Rt+1 — R, + AL Q[(S,11-a) — O[S, At)] ; [ a’ ]

0,
Ri =R+ p, 0

new_estimate = old_estimate + stepsize* (new_target - old_estimate)



ESTIMATING THE AVERAGE REWARD FROM DAIA

SyAyR, S;A,R,... S AR, S. A R, ..

1 M+l <41

Differential Q-learning

P o= PG r @) + maxgu(sta) = (s, a)
:

s'.r

Q105 A) = O[5, A) + a, [Rt+1 — Rt + AL O(S:41,a") — OLS;; At)]

51‘
Ri1 =R+ b0 Rt+1 = Rt + p, (Rt+1 + mdx Qz(SH.p a’) — 0[5, A4,) — Rt)

5t

new_estimate = old_estimate + stepsize* (new_target - old_estimate)



THE TWO ALGORITHMS LOOK QUITE SIMILAR

S0 Ao Ky 51 Ap Ry 5 Ap Ry 84y Ay Ry -

Differential Q-learning Discounted Q-learning

Q105 A) = O[5, A) + a, [Rt+1 — Rt + AL O(S:41,a") — OLS;; At)] Q105 A) = O[S, A) + a, [Rt+1 T AL O(S:41,a) — OLS; At)]

H it

5, 57

[

Rt+1 =R, + 5,6,

The algorithms are very similar implementation-wise;
the theoretical analysis is significantly different

Wan*, Naik*, & Sutton. (2021). Learning and Planning in Average-Reward Markov Decision Processes. ICML.



ADVANCED ALGORITHMS

» Hierarchical learning via options
» Differential intra-option, inter-option, interruption algorithms.

» Proved to converge in the tabular setting.

» More efticient learning algorithms

» Multi-step TD(A)-style algorithms with eligibility traces.

» Proved to converge with linear function approximation.
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THE MAIN MESSAGE

The performance of standard discounted-reward methods

can be significantly improved

by estimating the average reward
and subtracting it from the observed rewards.

0,.105,A) = 0[(5,4) + o, [Rt+1 Ty dx Q,(5,41,a) — O[S, At)]
l a

O105,4) = 0[5, A) + q [Rt+1 — Rt TV max Q/(5;41,a") — O[S, At)]



Average
Reward

2.6 -

2.5 -

2.4 -

2.3 -

2.2 -

2.1

NO INSTABILITY WITH LARGE DISCOUNT FACTORS

Q-learning

y=1.0

10000 20000 30000 40000 50000

Time step

Q-learning with reward centering

12099 7=099 ol

'ﬁ -

y =0.9

M

10000 20000 30000 40000 50000

Time step

AccessControl (tabular)



NO INSTABILITY WITH LARGE DISCOUNT FACTORS

Q-learning Q-learning with reward centering
_ y = 0.999 y=10_
| y = 0.9
y = (.8
D -
Average
Reward 10
3 -
300k 100k 200k 300k

Time step

PuckWorld (linear FA)



NO INSTABILITY WITH LARGE DISCOUNT FACTORS

DQON DON with reward centering
O -
- WK AT v v AR
Y V
y =0.8 y =0.9
Average
Reward
—0 -
—8 - y =0.99
10 y=0999  y=10

0 20000 40000 60000 80000 100000 O 20000 40000 60000 80000 100000

Time step Time step

Pendulum (non-linear FA)



TRENDS ARE CONSISTENT ACROSS PARAMETERS

Q-learning Q-learning with reward centering
2.6 _
2.5 | =
Average —
reward 2.4 -
over o
training 2.3 T
—
221 |
n=1
2.1 | -

1/128 1/64 1/32 1/16 1/8 1/4 1/2 1  1/128 1/64 1/32 1/16 1/8 1/4 1/2 1
step size: a step size: o

AccessControl (tabular)



UNDERLYING THEORY v(s) = 1’"(”) F7) + ells)

— 7
Rt+1 Rt+2 Rt+3 Rt+n
Standard discounted e 9) - o N k -
value function VJ}Z/'(S) o E[Rt+1 T th+2 T 4 RI-I—3 T ... ‘ SI - S] . JZ'[ Z / Rt-l—k-l—l ‘ St o S]
k=0
1 n

Average reward r(m) = — [ Z Rt]

| n —1

Differential - = [E _ _ —

value function Va(8) = B[R — 1) + Ry — (@) + ... | S, = ]




(1) -

INTUITION Vi) =T+ V)
THROUGH AN EXAMPLE
S A SB SO
v=08 615 393 4.92
. Stanc dard‘ =09 1107 897 9.96
SCOUMEEVAILES 0 999 101.01 98.99 99.99
v=08 1.15 -1.07 -0.08
v=09  1.07 -1.03 -0.04
v=099 1.01 -1.01 -0.01
Differential values 1 -1 0
Cenvt;rjs fﬁlﬁg’;}gr? - Vi(s) = By 2 V(R = 1(@) | S, = s = vi(s) -

k=0

r (1)

1=y



ESTIMATING (7
S0 Ao Ky 51 Ap Ry 5y Ap Ry S Ayt Bigp -
On-policy Rt+1 = Rt + AR, 41 — Rt)

Ofpoloy Ry = R+ 5

where 5; = Rt+l o Rt + th(SH-l) o Vz(St)



2.6-

Average 2.5- /4/0 | - |
reward - — - -4 0 +4 +8
over 24 +4

training 5 3.

(ShlftEd) +8
224 | |
n=1
1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1
step size: o step size: o

AccessControl (tabular)



TAKEAWAYS

» Reward centering can improve the performance of
discounted methods for all discount factors, especially as

y — 1.

» Reward centering can also make discounted methods

robust 1o shifts In the problems’ rewards.

» Both technigues of centering are quite effective; using the

T

D er

'or IS more appropriate for the off-policy setting.

—very RL algorithm will benefit with reward centering!

Analysis, more experiments, etc.:



https://arxiv.org/abs/2405.09999
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THANK YOU

Questions?

@& abhisheknaik96.github.io
B abhisheknaik?22296@gmail.com
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