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OUTLINE

▸ Dynamic Programming (DP) 

▸ Temporal-Difference (TD) Learning 

▸ Model-based RL 

▸ Policy Optimization
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▸ Sub-goal: evaluate a policy

▸ estimate the value function for a given policy

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′ )]

Gt = Rt+1 + Rt+2 + … + RT
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▸ But we can (and do!) interact with the world.

▸ Can we use that experience to improve our estimates? 
 
 vt+1(s) → [r + vt(s′ )]

How can we improve estimates  
from a stream of data?

S0, A0, R1, S1, …, St, At, Rt+1, St+1, …
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x̄N+1 = x̄N + α (xN+1 − x̄N)

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′ )]DP

vt+1(s) = vt(s) + α[(r + vt(s′ )) − vt(s)]TD
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▸ Simple heuristic:  

▸ with a small probability, pick a random action

• With probability ,  
pick an action randomly 

• With probability 1- ,  
pick the ‘greedy’ action

ϵ

ϵ

-greedy action selectionϵ
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CONTROL ALGORITHM: Q-LEARNING

“Off-policy”

:

Q(S, A) = Q(S, A) + α[R + maxa Q(S′ , a) − Q(S, A)]
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vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′ )]

action

observation

vt+1(S) = vt(S) + α[R + vt(S′ ) − vt(S)]
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▸ Where do models come from?

▸ They can also be learned from experience.

A a 1 B b 1 T 
A b 0 C a 3 T 
A a 1 B a 0 T 
A b 0 C b 0 T
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OUTLINE

▸ Dynamic Programming (DP) 

▸ Temporal-Difference (TD) Learning 

▸ Model-based RL 

▸ Policy Optimization
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▸ So far we have used value estimates to improve the policy. 

▸ Can we directly improve the policy?

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

Yes!
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POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the 
learned value function: 
 

▸ In policy-based methods, we need not consult the value 
function to select actions.

▸ Instead, we use action preferences that are learned.

π(s) = arg maxa Q(s, a)

h(s, a), ∀s, a π(a |s) =
h(s, a)

∑b h(s, b)
or  eh(s,a)

∑b eh(s,b)

“soft-max”
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▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

▸ Method: stochastic gradient ascent 

Ht+1(At) ≐ Ht(At) + α(Rt − R̄t)(1 − π(At))
Ht+1(a) ≐ Ht(a) + α(Rt − R̄t)(0 − π(a)) ∀a ≠ At

π(a) =
eH(a)

∑b eH(b) “Gradient-Bandit Algorithm”
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▸ Dynamic Programming (DP) 

▸ Temporal-Difference (TD) Learning 

▸ Model-based RL 

▸ Policy Optimization

Further reading: 
Sutton & Barto, 2018, Reinforcement Learning: An Introduction, 2nd Edition
http://incompleteideas.net/book/the-book.html



THANK YOU
Questions?

abhishek.naik@ualberta.ca
abhisheknaik96.github.io

anaik96


