
ESSENTIALS OF RL

Abhishek Naik

3rd Nepal Winter School in AI

Reinforcement Learning: Lecture 2

24th Dec 2021

OUTLINE

▸ Dynamic Programming (DP)

▸ Temporal-Difference (TD) Learning

▸ Model-based RL

▸ Policy Optimization

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0
vπ1

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0
vπ1

⋯

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2

⋯

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2

⋯

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

REINFORCEMENT LEARNING

▸ Goal: learning some behaviour to maximize a numerical
reward signal

▸ via trial and error

▸ with potentially delayed rewards.

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

▸ Sub-goal: evaluate a policy

REINFORCEMENT LEARNING

▸ Sub-goal: evaluate a policy

▸ estimate the value function for a given policy

REINFORCEMENT LEARNING

▸ Sub-goal: evaluate a policy

▸ estimate the value function for a given policy

vπ(s) ≐ 𝔼π[Gt ∣ St = s]

REINFORCEMENT LEARNING

▸ Sub-goal: evaluate a policy

▸ estimate the value function for a given policy

vπ(s) ≐ 𝔼π[Gt ∣ St = s] Gt = Rt+1 + Rt+2 + … + RT

REINFORCEMENT LEARNING

▸ Sub-goal: evaluate a policy

▸ estimate the value function for a given policy

vπ(s) ≐ 𝔼π[Gt ∣ St = s] Gt = Rt+1 + Rt+2 + … + RT

REINFORCEMENT LEARNING

▸ Sub-goal: evaluate a policy

▸ estimate the value function for a given policy

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

Gt = Rt+1 + Rt+2 + … + RT

FUNDAMENTALS

vπ(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vπ(s′)]

FUNDAMENTALS

Bellman equation

vπ(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vπ(s′)]

FUNDAMENTALS

Bellman equation

vπ(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vπ(s′)]

Evaluating the optimal policy, :π*

FUNDAMENTALS

Bellman equation

vπ(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vπ(s′)]

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

Evaluating the optimal policy, :π*

FUNDAMENTALS

Bellman equation

vπ(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vπ(s′)]

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

Evaluating the optimal policy, :π*

Bellman optimality equation

FUNDAMENTALS

Bellman equation

vπ(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vπ(s′)]

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

Evaluating the optimal policy, :π*

Bellman optimality equation

FUNDAMENTALS

qπ(s, a) ≐ 𝔼π[Gt ∣ St = s, At = a]
= ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

= ∑
s′ ,r

p(s′ , r |s, a)[r + ∑
a′

π(a′ |s′)qπ(s′ , a′)]

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ(s) = ∑
a

π(a |s) qπ(s, a)

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

qπ*(s, a) = ∑s′ ,r p(s′ , r |s, a)[r + maxa′ qπ*(s′ , a′)]

FUNDAMENTALS

qπ(s, a) ≐ 𝔼π[Gt ∣ St = s, At = a]
= ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

= ∑
s′ ,r

p(s′ , r |s, a)[r + ∑
a′

π(a′ |s′)qπ(s′ , a′)]

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ(s) = ∑
a

π(a |s) qπ(s, a)

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

qπ*(s, a) = ∑s′ ,r p(s′ , r |s, a)[r + maxa′ qπ*(s′ , a′)]

FUNDAMENTALS

qπ(s, a) ≐ 𝔼π[Gt ∣ St = s, At = a]
= ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

= ∑
s′ ,r

p(s′ , r |s, a)[r + ∑
a′

π(a′ |s′)qπ(s′ , a′)]

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ(s) = ∑
a

π(a |s) qπ(s, a)

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

qπ*(s, a) = ∑s′ ,r p(s′ , r |s, a)[r + maxa′ qπ*(s′ , a′)]

FUNDAMENTALS

qπ(s, a) ≐ 𝔼π[Gt ∣ St = s, At = a]
= ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

= ∑
s′ ,r

p(s′ , r |s, a)[r + ∑
a′

π(a′ |s′)qπ(s′ , a′)]

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ(s) = ∑
a

π(a |s) qπ(s, a)

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

qπ*(s, a) = ∑s′ ,r p(s′ , r |s, a)[r + maxa′ qπ*(s′ , a′)]

FUNDAMENTALS

qπ(s, a) ≐ 𝔼π[Gt ∣ St = s, At = a]
= ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

= ∑
s′ ,r

p(s′ , r |s, a)[r + ∑
a′

π(a′ |s′)qπ(s′ , a′)]

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ(s) = ∑
a

π(a |s) qπ(s, a)

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

qπ*(s, a) = ∑s′ ,r p(s′ , r |s, a)[r + maxa′ qπ*(s′ , a′)]

FUNDAMENTALS

qπ(s, a) ≐ 𝔼π[Gt ∣ St = s, At = a]
= ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

= ∑
s′ ,r

p(s′ , r |s, a)[r + ∑
a′

π(a′ |s′)qπ(s′ , a′)]

vπ(s) ≐ 𝔼π[Gt ∣ St = s]
= ∑

a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ(s) = ∑
a

π(a |s) qπ(s, a)

vπ*(s) = maxa ∑s′ ,r p(s′ , r |s, a)[r + vπ*(s′)]

qπ*(s, a) = ∑s′ ,r p(s′ , r |s, a)[r + maxa′ qπ*(s′ , a′)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

▸ iteratively improve estimates

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

▸ iteratively improve estimates

▸ with the help of bootstrapping.

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

▸ iteratively improve estimates

▸ with the help of bootstrapping.

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

▸ iteratively improve estimates

▸ with the help of bootstrapping.

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

▸ iteratively improve estimates

▸ with the help of bootstrapping.

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

▸ Goal:

▸ evaluate a given policy (the prediction problem), or

▸ find the best policy (the control problem).

▸ Methodology:

▸ Given a model of the world,

▸ iteratively improve estimates

▸ with the help of bootstrapping.

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

▸ But we can (and do!) interact with the world.

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

▸ But we can (and do!) interact with the world.

▸ Can we use that experience to improve our estimates?

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

▸ But we can (and do!) interact with the world.

▸ Can we use that experience to improve our estimates?

 vt+1(s) → [r + vt(s′)]

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

▸ But we can (and do!) interact with the world.

▸ Can we use that experience to improve our estimates?

 vt+1(s) → [r + vt(s′)]

How can we improve estimates
from a stream of data?

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

▸ But we can (and do!) interact with the world.

▸ Can we use that experience to improve our estimates?

 vt+1(s) → [r + vt(s′)]

How can we improve estimates
from a stream of data?

S0, A0, R1, S1, …, St, At, Rt+1, St+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x̄N+1 =
1

N + 1
(

N

∑
i=1

xi + xN+1)

=
N

N + 1
1
N

N

∑
i=1

xi +
1

N + 1
xN+1

=
N

N + 1
x̄N +

1
N + 1

xN+1

= (1 −
1

N + 1
) x̄N +

1
N + 1

xN+1

= x̄N +
1

N + 1
(xN+1 − x̄N)

x̄N+1 = x̄N + α(xN+1 − x̄N)

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x̄N+1 =
1

N + 1
(

N

∑
i=1

xi + xN+1)

=
N

N + 1
1
N

N

∑
i=1

xi +
1

N + 1
xN+1

=
N

N + 1
x̄N +

1
N + 1

xN+1

= (1 −
1

N + 1
) x̄N +

1
N + 1

xN+1

= x̄N +
1

N + 1
(xN+1 − x̄N)

x̄N+1 = x̄N + α(xN+1 − x̄N)

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x̄N+1 =
1

N + 1
(

N

∑
i=1

xi + xN+1)

=
N

N + 1
1
N

N

∑
i=1

xi +
1

N + 1
xN+1

=
N

N + 1
x̄N +

1
N + 1

xN+1

= (1 −
1

N + 1
) x̄N +

1
N + 1

xN+1

= x̄N +
1

N + 1
(xN+1 − x̄N)

x̄N+1 = x̄N + α(xN+1 − x̄N)

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x̄N+1 =
1

N + 1
(

N

∑
i=1

xi + xN+1)

=
N

N + 1
1
N

N

∑
i=1

xi +
1

N + 1
xN+1

=
N

N + 1
x̄N +

1
N + 1

xN+1

= (1 −
1

N + 1
) x̄N +

1
N + 1

xN+1

= x̄N +
1

N + 1
(xN+1 − x̄N)

x̄N+1 = x̄N + α(xN+1 − x̄N)

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x̄N+1 =
1

N + 1
(

N

∑
i=1

xi + xN+1)

=
N

N + 1
1
N

N

∑
i=1

xi +
1

N + 1
xN+1

=
N

N + 1
x̄N +

1
N + 1

xN+1

= (1 −
1

N + 1
) x̄N +

1
N + 1

xN+1

= x̄N +
1

N + 1
(xN+1 − x̄N)

x̄N+1 = x̄N + α(xN+1 − x̄N)

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA

▸ An example for intuition:

▸ Compute the average
of a stream of samples

x̄N+1 =
1

N + 1
(

N

∑
i=1

xi + xN+1)

=
N

N + 1
1
N

N

∑
i=1

xi +
1

N + 1
xN+1

=
N

N + 1
x̄N +

1
N + 1

xN+1

= (1 −
1

N + 1
) x̄N +

1
N + 1

xN+1

= x̄N +
1

N + 1
(xN+1 − x̄N)

x̄N+1 = x̄N + α(xN+1 − x̄N)

x1, x2, x3, …, xN, xN+1, …

IMPROVING ESTIMATES FROM A STREAM OF DATA
x̄N+1 = x̄N + α (xN+1 − x̄N)

IMPROVING ESTIMATES FROM A STREAM OF DATA
x̄N+1 = x̄N + α (xN+1 − x̄N)

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

IMPROVING ESTIMATES FROM A STREAM OF DATA
x̄N+1 = x̄N + α (xN+1 − x̄N)

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]DP

IMPROVING ESTIMATES FROM A STREAM OF DATA
x̄N+1 = x̄N + α (xN+1 − x̄N)

new_estimate = old_estimate + stepsize*(new_target - old_estimate)

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]DP

vt+1(s) = vt(s) + α[(r + vt(s′)) − vt(s)]TD

TEMPORAL-DIFFERENCE (TD) LEARNING

TEMPORAL-DIFFERENCE (TD) LEARNING

:

CONTROL: EXPLORATION VS EXPLOITATION

CONTROL: EXPLORATION VS EXPLOITATION

▸ Simple heuristic:

▸ with a small probability, pick a random action

CONTROL: EXPLORATION VS EXPLOITATION

▸ Simple heuristic:

▸ with a small probability, pick a random action

CONTROL: EXPLORATION VS EXPLOITATION

▸ Simple heuristic:

▸ with a small probability, pick a random action

• With probability ,
pick an action randomly

• With probability 1- ,
pick the ‘greedy’ action

ϵ

ϵ

CONTROL: EXPLORATION VS EXPLOITATION

▸ Simple heuristic:

▸ with a small probability, pick a random action

• With probability ,
pick an action randomly

• With probability 1- ,
pick the ‘greedy’ action

ϵ

ϵ

-greedy action selectionϵ

CONTROL ALGORITHM: SARSA

:

CONTROL ALGORITHM: SARSA

:

“On-policy”

CONTROL ALGORITHM: Q-LEARNING

:

CONTROL ALGORITHM: Q-LEARNING

:

Q(S, A) = Q(S, A) + α[R + maxa Q(S′ , a) − Q(S, A)]

CONTROL ALGORITHM: Q-LEARNING

“Off-policy”

:

Q(S, A) = Q(S, A) + α[R + maxa Q(S′ , a) − Q(S, A)]

PLANNING USING A MODEL OF THE WORLD

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:
 vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:

▸ We can also use the model as a substitute for
real-world experience:

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:

▸ We can also use the model as a substitute for
real-world experience:

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

action

observation

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:

▸ We can also use the model as a substitute for
real-world experience:

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

action

observation

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:

▸ We can also use the model as a substitute for
real-world experience:

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

action

observation

vt+1(S) = vt(S) + α[R + vt(S′) − vt(S)]

PLANNING USING A MODEL OF THE WORLD

▸ We studied one way to use a model with DP:

▸ We can also use the model as a substitute for
real-world experience:

vt+1(s) = ∑a π(a |s)∑s′ ,r p(s′ , r |s, a)[r + vt(s′)]

action

observation

vt+1(S) = vt(S) + α[R + vt(S′) − vt(S)]

LEARNING A MODEL FROM EXPERIENCE

LEARNING A MODEL FROM EXPERIENCE

▸ Where do models come from?

LEARNING A MODEL FROM EXPERIENCE

▸ Where do models come from?

▸ They can also be learned from experience.

LEARNING A MODEL FROM EXPERIENCE

▸ Where do models come from?

▸ They can also be learned from experience.

A a 1 B b 1 T
A b 0 C a 3 T
A a 1 B a 0 T
A b 0 C b 0 T

DYNA: INTEGRATING LEARNING AND PLANNING

Learning the model

Planning with
the learned model

{

{

DYNA: INTEGRATING LEARNING AND PLANNING

:

Learning the model

Planning with
the learned model

{

{

DYNA: INTEGRATING LEARNING AND PLANNING

:

Learning the model

Planning with
the learned model

{

{

DYNA: INTEGRATING LEARNING AND PLANNING

:

Learning the model

Planning with
the learned model

{

{

DYNA: INTEGRATING LEARNING AND PLANNING

:

Learning the model

Planning with
the learned model

{

{

OUTLINE

▸ Dynamic Programming (DP)

▸ Temporal-Difference (TD) Learning

▸ Model-based RL

▸ Policy Optimization

▸ So far we have used value estimates to improve the policy.

▸ So far we have used value estimates to improve the policy.

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

▸ So far we have used value estimates to improve the policy.

▸ Can we directly improve the policy?

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

▸ So far we have used value estimates to improve the policy.

▸ Can we directly improve the policy?

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

▸ So far we have used value estimates to improve the policy.

▸ Can we directly improve the policy?

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

▸ So far we have used value estimates to improve the policy.

▸ Can we directly improve the policy?

π0 π*π1 π2 πn−1

vπ0
vπ1

vπn−2
vπn−1

⋯

Yes!

POLICY PARAMETRIZATION

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

π(s) = arg maxa Q(s, a)

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

▸ In policy-based methods, we need not consult the value
function to select actions.

π(s) = arg maxa Q(s, a)

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

▸ In policy-based methods, we need not consult the value
function to select actions.

▸ Instead, we use action preferences that are learned.

π(s) = arg maxa Q(s, a)

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

▸ In policy-based methods, we need not consult the value
function to select actions.

▸ Instead, we use action preferences that are learned.

π(s) = arg maxa Q(s, a)

h(s, a), ∀s, a

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

▸ In policy-based methods, we need not consult the value
function to select actions.

▸ Instead, we use action preferences that are learned.

π(s) = arg maxa Q(s, a)

h(s, a), ∀s, a π(a |s) =
h(s, a)

∑b h(s, b)

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

▸ In policy-based methods, we need not consult the value
function to select actions.

▸ Instead, we use action preferences that are learned.

π(s) = arg maxa Q(s, a)

h(s, a), ∀s, a π(a |s) =
h(s, a)

∑b h(s, b)
or eh(s,a)

∑b eh(s,b)

POLICY PARAMETRIZATION

▸ In value-based methods, we select actions based on the
learned value function:

▸ In policy-based methods, we need not consult the value
function to select actions.

▸ Instead, we use action preferences that are learned.

π(s) = arg maxa Q(s, a)

h(s, a), ∀s, a π(a |s) =
h(s, a)

∑b h(s, b)
or eh(s,a)

∑b eh(s,b)

“soft-max”

LEARNING ACTION PREFERENCES

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

▸ Method: stochastic gradient ascent

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

▸ Method: stochastic gradient ascent

π(a) =
eH(a)

∑b eH(b)

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

▸ Method: stochastic gradient ascent

Ht+1(At) ≐ Ht(At) + α(Rt − R̄t)(1 − π(At))

π(a) =
eH(a)

∑b eH(b)

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

▸ Method: stochastic gradient ascent

Ht+1(At) ≐ Ht(At) + α(Rt − R̄t)(1 − π(At))
Ht+1(a) ≐ Ht(a) + α(Rt − R̄t)(0 − π(a)) ∀a ≠ At

π(a) =
eH(a)

∑b eH(b)

LEARNING ACTION PREFERENCES

▸ Consider a simple case: there is just one state.

▸ Objective: maximize amount of reward obtained

▸ Method: stochastic gradient ascent

Ht+1(At) ≐ Ht(At) + α(Rt − R̄t)(1 − π(At))
Ht+1(a) ≐ Ht(a) + α(Rt − R̄t)(0 − π(a)) ∀a ≠ At

π(a) =
eH(a)

∑b eH(b) “Gradient-Bandit Algorithm”

OUTLINE

▸ Dynamic Programming (DP)

▸ Temporal-Difference (TD) Learning

▸ Model-based RL

▸ Policy Optimization

OUTLINE

▸ Dynamic Programming (DP)

▸ Temporal-Difference (TD) Learning

▸ Model-based RL

▸ Policy Optimization

Further reading:
Sutton & Barto, 2018, Reinforcement Learning: An Introduction, 2nd Edition
http://incompleteideas.net/book/the-book.html

THANK YOU
Questions?

abhishek.naik@ualberta.ca
abhisheknaik96.github.io

anaik96

