ESSENTIALS OF RL

Reinforcement Learning: Lecture 2

3rd Nepal Winter School in Al
24th Dec 2021

Abhishek Naik

UNIVERSITY OF

ALBERTA R

amil

OUTLINE

» Dynamic Programming (DP)
» Temporal-Difference (TD) Learning

» Model-based RL

» Policy Optimization

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

» Goal: learning some behaviour to maximize a numerical
reward signal

REINFORCEMENT LEARNING

» Goal: learning some behaviour to maximize a numerical
reward signal

» via trial and error

REINFORCEMENT LEARNING

» Goal: learning some behaviour to maximize a numerical
reward signal

» via trial and error

» with potentially delayed rewards.

REINFORCEMENT LEARNING

» Goal: learning some behaviour to maximize a numerical
reward signal

» via trial and error

» with potentially delayed rewards.

REINFORCEMENT LEARNING

» Goal: learning some behaviour to maximize a numerical
reward signal

» via trial and error

» with potentially delayed rewards.

71'0]Z'*

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

7 5]

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

%)

7 5]
1

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

%)

7 5]
1 Vo

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

7 5] %)
Vo Vo

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

merical

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

71'0 /A 1 71'2 .o ﬂn_l
Vﬂo Vﬂl vﬂn—z

merical

ﬂ-*

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

merical

-1 "

\% Voo

REINFORCEMENT LEARNING

» Goal: learning some behaviour to

maximize a nu

reward signal
» Via trial and error

» with potentially delayed rewards.

v/

V 1%
T2 TTh—1

merical

| "

\ /\/ S

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

» Sub-goal: evaluate a policy

REINFORCEMENT LEARNING

» Sub-goal: evaluate a policy

» estimate the value function for a given policy

REINFORCEMENT LEARNING

» Sub-goal: evaluate a policy

» estimate the value function for a given policy

v (s) = —E[Gt | S, = S]

REINFORCEMENT LEARNING

» Sub-goal: evaluate a policy

» estimate the value function for a given policy

v (s) = ‘ﬂ[Gr | S, = S] G,=R. +R.,+..+R;

REINFORCEMENT LEARNING

» Sub-goal: evaluate a policy

» estimate the value function for a given policy

v (s) = ‘ﬂ[Gr | S, = S] G,=R. +R.,+..+R;

Y

REINFORCEMENT LEARNING

» Sub-goal: evaluate a policy

» estimate the value function for a given policy

v (s) = ‘ﬂ[Gr | S, = S] G,=R. +R.,+..+R;

5wl E sl)

(2

FUNDAMENTALS

v(s) = 2 mlals) 2, p(s',rls,a) [+ v (s

FUNDAMENTALS

v(s) = 2 mlals) 2, p(s',rls,a) [+ v (s

Bellman equation

FUNDAMENTALS

v(s) = 2 mlals) 2, p(s',rls,a) [+ v (s

Bellman equation

Evaluating the optimal policy, 7*:

FUNDAMENTALS

v(s) = 2 mlals) 2, p(s',rls,a) [+ v (s

Bellman equation

Evaluating the optimal policy, 7*:

v_+(S) = max_ ZS, p(srls,a) [r + vﬂ*(s’)]

FUNDAMENTALS

v(s) = 2 mlals) 2, p(s',rls,a) [+ v (s

Bellman equation

Evaluating the optimal policy, 7*:

v_+(S) = max_ ZS, p(srls,a) [r + vﬂ*(s’)]

Bellman optimality equation

FUNDAMENTALS

v(s) = 2 mlals) 2, p(s',rls,a) [+ v (s

Bellman equation

Evaluating the optimal policy, 7*:

o
v «(§) = max, ZS,J p(s’,rls,a) [r - vﬂ*(s’)] e‘a

Bellman optimality equation ‘

FUNDAMENTALS

v (s) = [Eﬂ[Gt | S, = S]
— Z n(als) Zp(s’, rls,a) [r + vﬂ(s’)]

q.(s,a) = [Eﬂ[Gt N a]

FUNDAMENTALS

v (s) = [Ejr[Gt | S, = S]
= #(al9) Y p(s'.r5.a@)[r + v (s)
qﬂ(s, a) — [Eﬂ[Gt | St — S’At = a]
— Zp(s’, r|s,a) [r + VE(S')]

FUNDAMENTALS

v (s) = [Ejr[Gt | S, = S]
_ Z n(als) Zp(s’, rls,a) [r + vﬂ(s')]

QTL'(S’ a) = [E]Z'[Gt | St — S? At — a] VE(S) — Z ﬂ(CllS) QT[(S’ Cl)
= Zp(s’, rls,a) [r + vﬂ(s’)])

FUNDAMENTALS

v (s) = [EJZ[GZ | S, = S]
_ Z n(als) Zp(s’, rls,a) [r + vﬂ(s')]

q.(s,a) = E,|G,| S,=s,A, =4 ve(s) =) 7(als) qys. a)
= Zp(s’, rls,a) [r + vﬂ(s’)])

= ZP(S/,HS, Cl) [7"+ Zﬂ(d’ls’)qﬂ_(j",d/)]

FUNDAMENTALS

v (s) = [Eﬂ[Gt | S, = S]
_ Z n(als) Zp(s’, rls,a) [r + vﬂ(s')]

q.(s,a) = E,|G,| S,=s,A, =4 ve(s) =) 7(als) qys. a)
= Zp(s’, rls,a) [r + vﬂ(s’)])

=) p(srls.a)|r+) n(a'|s)qys’ a)

v_«($) = max, ZS, p(shr | s, a) [r + vﬂ*(s’)]

FUNDAMENTALS

v (s) = [Eﬂ[Gt | S, = S]
_ Z n(als) Zp(s’, rls,a) [r + vﬂ(s')]

q.(s,a) = E,|G,| S,=s,A, =4 ve(s) =) 7(als) qys. a)
= Zp(s’, rls,a) [r + vﬂ(s’)])

= S psirlsalr+ B el

v_«($) = max, ZS, p(shr | s, a) [r + vﬂ*(s’)]

q.+(s,a) = ZS, p(srls,a) [r + max q_«(s’, a’)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:

» evaluate a given policy (the prediction problem), or

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or

» find the best policy (the control problem).

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).

» Methodology:

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).

» Methodology:

» Given a model of the world,

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).

» Methodology:
» Given a model of the world,

» iteratively improve estimates

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).
» Methodology:
» Given a model of the world,
» iteratively improve estimates

» with the help of bootstrapping.

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).
» Methodology:
» Given a model of the world,
» iteratively improve estimates

» with the help of bootstrapping.

Vi) = X 2@l), pls'.rls,a)|r+v(s)

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).

» Methodology:

» Given a model of the world,

» iteratively improve estimates

» with the help of bootstrapping.

V() = X, alal) X, pis’rls.a)|r+v(s)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).

» Methodology:

» Given a model of the world,

» iteratively improve estimates

» with the help of bootstrapping.

V() = X, alal) X, pis’rls.a)|r+v(s)]

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

» Goal:
» evaluate a given policy (the prediction problem), or
» find the best policy (the control problem).

» Methodology:

» Given a model of the world,

» iteratively improve estimates

» with the help of bo’otstrapping.

v (9) = X m @l Xy, PO 115 Dl +vis)

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

» But we can (and do!) interact with the world.

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

» But we can (and do!) interact with the world.

» Can we use that experience to improve our estimates?

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

» But we can (and do!) interact with the world.

» Can we use that experience to improve our estimates?

Vip1(8) = [r V(s l)]

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

» But we can (and do!) interact with the world.

» Can we use that experience to improve our estimates?

Vip1(8) = [” T Vt(S,)]

How can we improve estimates
from a stream of data?

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

» But we can (and do!) interact with the world.

» Can we use that experience to improve our estimates?

Vip1(8) = [” T Vt(S,)]

How can we improve estimates
from a stream of data?

S0: Ay Ri5875 -3 S A R 158,415 -+

IMPROVING ESTIMATES FROM A STREAM OF DATA

IMPROVING ESTIMATES FROM A STREAM OF DATA

» An example for intuition:

» Compute the average
of a stream of samples

IMPROVING ESTIMATES FROM A STREAM OF DATA

» An example for intuition:

» Compute the average
of a stream of samples

X1 X0y X35 v vvy Xpys Xng] - - -

IMPROVING ESTIMATES FROM A STREAM OF DATA

(Zx + Xpn41)

X —
» An example for intuition: NN

» Compute the average
of a stream of samples

X1 X0y X35 v vvy Xpys Xng] - - -

IMPROVING ESTIMATES FROM A STREAM OF DATA

X = X, + X
» An example for intuition: NN+ 1(Z N+1)
» Compute the average N 1 1
of a stream of samples "N+ 1N gl,xi | N [N+

X1 X0y X35 v vvy Xpys Xng] - - -

IMPROVING ESTIMATES FROM A STREAM OF DATA

» An example for intuition: N1 = N + l(zx tven)
» Compute the average N 1 1
of a stream of samples N1 1N g}xz‘ | N] N
N |
Xy T XN+1

X15X25 X35 o vy Xpjs Xpng 1o - - - _N+1

IMPROVING ESTIMATES FROM A STREAM OF DATA

X = X, + X
» An example for intuition: N1 N + 1(Z v+1)
» Compute the average N 1o
of a stream of samples N+ Ngl,xi YN [N+
N
X5 X5 X3 +nvy Xns Xpis g5 -+ - TN+ 1IN Ny v

1 |
X X
N+1) NT N1 M

IMPROVING ESTIMATES FROM A STREAM OF DATA

X = X, + X
» An example for intuition: N1 N + 1(Z v+1)
» Compute the average N 1 1
of a stream of samples N+ Ngl,xi YN [N+
N
X5 X5 X3 +nvy Xns Xpis g5 -+ - TN+ 1IN Ny v

IMPROVING ESTIMATES FROM A STREAM OF DATA

X = X, + X
» An example for intuition: N1 N + 1(Z v+1)
» Compute the average N 1 1
of a stream of samples N+ Ngl,xi Yn [N+
N
X5 X5 X35 + vy Xnis Xpyis g5 -+ - TN+ 1IN Ny v

IMPROVING ESTIMATES FROM A STREAM OF DATA

Xnyi1 = Xy +a Xy, — Xy)

IMPROVING ESTIMATES FROM A STREAM OF DATA

Xnyi1 = Xy +a Xy, — Xy)

new_estimate = old_estimate + stepsize* (new_target - old_estimate)

IMPROVING ESTIMATES FROM A STREAM OF DATA

Xnyi1 = Xy +a Xy, — Xy)

new_estimate = old_estimate + stepsize* (new_target - old_estimate)

DP v, (s) = za n(als) ZS,J p(s,r|s,a) [r + vt(s’)]

IMPROVING ESTIMATES FROM A STREAM OF DATA

Xnyi1 = Xy +a Xy, — Xy)

new_estimate = old_estimate + stepsize * (new_target - old_estimate)

DP v, (s) = za n(als) ZS,J p(s,r|s,a) [r + vt(s’)]

TD V1 (8) = v,(s) + a[(r + vt(s’)) — vt(s)]

TEMPORAL-DIFFERENCE (TD) LEARNING

(TD)

Algorithm : Tabular TD learning to estimate v

Input: The target policy m

Algorithm parameters: step size a € (0, 1]
Initialize V' (s), for all s € §, arbitrarily (e.g., to zero)
Observe initial state S

for each time step do

A < action according to 7 in S

Take action A, observe R, .S’

V(S) < V(S)+ «a [R. + V(S") = V(S)]
S« S’

end
return V'

CONTROL: EXPLORATION VS EXPLOITATION

CONTROL: EXPLORATION VS EXPLOITATION

» Simple heuristic:

» with a small probability, pick a random action

CONTROL: EXPLORATION VS EXPLOITATION

» Simple heuristic:

» with a small probability, pick a random action

sl

-
|

CONTROL: EXPLORATION VS EXPLOITATION

» Simple heuristic:

» with a small probability, pick a random action

]

o With probability €,

pick an action randomly

o With probability 1-¢,

pick the ‘greedy’ action

CONTROL: EXPLORATION VS EXPLOITATION

» Simple heuristic:

» with a small probability, pick a random action

pick an action randomly
o With probability 1-¢,
pick the ‘greedy’ action

r\] l% { e« With probability €, ,

— \ €-greedy action selection }

SARSA

Algorithm : SARSA to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize Q) (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S, A) + « [R + Q(S", A") — Q(S, 4)}
S« 5’
end

SARSA

Algorithm : SARSA to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize Q) (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A" « action in S” according to policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S, A) + « [R + Q(S", A") — Q(S, 4)}
S« 5’
end

“On-policy”

(-LEARNING

Algorithm : Q-learning to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to the greedy policy derived from Q

Q(S,A) + Q(S, A) + o [R+Q(S', A") — Q(S, A)]
S « S’
end

(-LEARNING

Algorithm : Q-learning to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to the greedy policy derived from Q

Q(S,A) + Q(S, A) + o [R+Q(S', A") — Q(S, A)]
S « S’
end

O(S,A) = (S, A) + a|R + max, O(S",a) — O(S, A)|

(-LEARNING

Algorithm : Q-learning to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to the greedy policy derived from Q

Q(S,A) + Q(S, A) + o [R+Q(S', A") — Q(S, A)]
S « S’
end

“Off-policy”

O(S,A) = (S, A) + a|R + max, O(S",a) — O(S, A)|

PLANNING USING A MODEL OF THE WORLD

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

Vi) = 2 mals) 2 p(s»’, r | s, a) r+v(s))]

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

Vi) = 2 mals) 2 p(s}’, r|s,a) r+v(s))]

» We can also use the model as a substitute for
real-world experience:

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

Vi) = 2 mals) 2 p(s}’, r|s,a) r+v(s))]

» We can also use the model as a substitute for
real-world experience:

action

observation

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

Vi) = 2 mals) 2 p(s}’, r|s, a) r+v(s))]

» We can also use the model as a substitute for
real-world experience:

observation

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

Vi) = 2 mals) 2 p(s}’, r|s, a) r+v(s))]

» We can also use the model as a substitute for
real-world experience:

Vt+1(S) = V(S) + CI[R + VI(S’) — Vt(S)]

PLANNING USING A MODEL OF THE WORLD

» We studied one way to use a model with DP:

Vi) = 2 mals) 2 p(s}’, r|s,a) r+v(s))]

» We can also use the model as a substitute for
real-world experience:

Vt+1(S) = V(S) + CI[R + VI(S’) — Vt(S)]

LEARNING A MODEL FROM EXPERIENCE

LEARNING A MODEL FROM EXPERIENCE

» Where do models come from?

LEARNING A MODEL FROM EXPERIENCE

» Where do models come from?

» They can also be learned from experience.

LEARNING A MODEL FROM EXPERIENCE

» Where do models come from?

» They can also be learned from experience.

Aal1Bb1T
AbO0Ca3T
Aal1BaOT
AbOCDbOT

DYNA: INTEGRATING LEARNING AND PLANNING

DYNA:

Algorithm : Dyna to estimate () =~ ()~

Parameters: step size o € (0, 1]
Initialize ()(s,a) and Model(s,a), forall s € S,a € A

Observe initial state S
for each time step do

A < action in .S according to policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’

DYNA:

Algorithm : Dyna to estimate () =~ ()~

Parameters: step size o € (0, 1]

1 Initialize (s, a) and Model(s,a), forall s € S,a € A
2 Observe initial state .S

3 for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Update model: Model(S, A) + S’, R

DYNA:

Algorithm : Dyna to estimate () =~ ()~

Parameters: step size o € (0, 1]

1 Initialize (s, a) and Model(s,a), forall s € S,a € A
2 Observe initial state .S
3 for each time step do

A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
Update model: Model(S, A) < S', R
while time to plan do

S, < random previously observed state

: : e Planning with
A, < random previously picked action in S the learned model
R,,S;, < Model(S,, Ap)

Q(Sy, Ay) « Q(S,, A,) + [R.p + max, Q(5,,,a) — Q(S,, Ap)]

Algorithm : Dyna to estimate () =~ ()~

Parameters: step size o € (0, 1]
1 Initialize Q(s,a) and Model(s,a), forall s € S,a € A
2 Observe initial state .S
3 for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’

Update model: Model(S, A) < S', R

while time to plan do

S, < random previously observed state

A, < random previously picked action in .S

R,,S), < Model(S),, A,)

11 Q(Sp, Ap) + Q(Sp, Ap) + a | R, + max, Q(S,,a) — Q(Sp, Ap)l
12 end

13 S+ S

14 end

Planning with
the learned model

OUTLINE

» Dynamic Programming (DP)
» Temporal-Difference (TD) Learning

» Model-based RL

» Policy Optimization

» So far we have used value estimates to improve the policy.

» So far we have used value estimates to improve the policy.

K
TTn—1 2

\ /\/ S

» So far we have used value estimates to improve the policy.

» Can we directly improve the policy?

71'0 U 1 71'2 cos ﬂlfl— 1 JT x
vﬂO vﬂ | Vﬂn—Z ij-n— |

» So far we have used value estimates to improve the policy.

» Can we directly improve the policy?

7[0 71'1 71'2 cos ﬂn—l]Z'>I<

» So far we have used value estimates to improve the policy.

» Can we directly improve the policy?

Ty — | — My eee —> T, — TTF

» So far we have used value estimates to improve the policy.

» Can we directly improve the policy?

Ty — | — My eee —> T, — TTF

Yes!

POLICY PARAMETRIZATION

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

» Instead, we use action preferences that are learned.

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

» Instead, we use action preferences that are learned.

h(s,a), Vs,a

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

» Instead, we use action preferences that are learned.

h(s,a)
> , (s, b)

h(s,a), Vs,a n(als) =

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

» Instead, we use action preferences that are learned.

h(s,a) PLLCED
or
2., (s, b) >, ehth)

h(s,a), Vs,a n(als) =

POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

» Instead, we use action preferences that are learned.

h(s,a) PLLCED
or
2., (s, b) >, ehth)

“soft-max”

h(s,a), Vs,a n(als) =

LEARNING ACTION PREFERENCES

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.

» Objective: maximize amount of reward obtained

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.
» Objective: maximize amount of reward obtained

» Method: stochastic gradient ascent

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.
» Objective: maximize amount of reward obtained

» Method: stochastic gradient ascent

eH(a)

- Y eHo)

m(a)

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.
» Objective: maximize amount of reward obtained

» Method: stochastic gradient ascent

oH(@)

zb eH()

n(a) =

H,\(A) =H(A)+a(R—R)(1-xA))

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.
» Objective: maximize amount of reward obtained

» Method: stochastic gradient ascent

oH(@)

zb eH()

n(a) =

H,\(A) =H(A)+a(R—R)(1-xA))
H,(a) = H(a)+ a(R,— R,) (0 — n(a)) Va#A,

LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.
» Objective: maximize amount of reward obtained

» Method: stochastic gradient ascent

eH(a)

n(a) = “Gradient-Bandit Algorithm”
Y eHo) 9

H,\(A) =H(A)+a(R—R)(1-xA))
H,(a) = H(a)+ a(R,— R,) (0 — n(a)) Va#A,

OUTLINE

» Dynamic Programming (DP)
» Temporal-Difference (TD) Learning

» Model-based RL

» Policy Optimization

il

OUTLINE

» Dynamic Programming (DP)
» Temporal-Difference (TD) Learning

» Model-based RL

» Policy Optimization

Further reading:

Sutton & Barto, 2018, Reinforcement Learning: An Introduction, 2nd Edition
http://incompleteideas.net/book/the-book.html

THANK YOU

Questions?

@) abhisheknaik96.github.io
B abhishek.naik@ualberta.ca
YW anaik96

