ESS
 EN
 T
 I
 A

 OF
 RL

Reinforcement Learning: Lecture 2

3rd Nepal Winter School in Al

24th Dec 2021

Abhishek Naik

OUTLINE

, Dynamic Programming (DP)
〉 Temporal-Difference (TD) Learning
, Model-based RL
, Policy Optimization

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal

REINFORCEMENT LEARNING

, Goal: learning some behaviour to maximize a numerical reward signal
v via trial and error

REINFORCEMENT LEARNING

, Goal: learning some behaviour to maximize a numerical reward signal
v via trial and error
b with potentially delayed rewards.

REINFORCEMENT LEARNING

, Goal: learning some behaviour to maximize a numerical reward signal
v via trial and error
, with potentially delayed rewards.

$$
\pi_{0} \longrightarrow \pi^{*}
$$

REINFORCEMENT LEARNING

, Goal: learning some behaviour to maximize a numerical reward signal
v via trial and error
b with potentially delayed rewards.

$$
\pi_{0}
$$

$$
\pi^{*}
$$

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
v via trial and error
b with potentially delayed rewards.

$$
\pi_{0} \quad \pi_{1} \quad \pi^{*}
$$

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
v via trial and error
b with potentially delayed rewards.

$$
\pi_{0} \quad \pi_{1} \quad \pi_{2} \quad \pi^{*}
$$

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

$$
\begin{array}{lllll}
\pi_{0} & \pi_{1} & \pi_{2} & \pi_{n-1} & \pi^{*}
\end{array}
$$

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

- Goal: learning some behaviour to maximize a numerical reward signal
- via trial and error
- with potentially delayed rewards.

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

, Sub-goal: evaluate a policy

REINFORCEMENT LEARNING

, Sub-goal: evaluate a policy
> estimate the value function for a given policy

REINFORCEMENT LEARNING

, Sub-goal: evaluate a policy

- estimate the value function for a given policy

$$
v_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]
$$

REINFORCEMENT LEARNING

Sub-goal: evaluate a policy

- estimate the value function for a given policy

$$
v_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \quad G_{t}=R_{t+1}+R_{t+2}+\ldots+R_{T}
$$

REINFORCEMENT LEARNING

Sub-goal: evaluate a policy

- estimate the value function for a given policy

$$
v_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \quad G_{t}=R_{t+1}+R_{t+2}+\ldots+R_{T}
$$

REINFORCEMENT LEARNING

, Sub-goal: evaluate a policy

- estimate the value function for a given policy

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \quad G_{t}=R_{t+1}+R_{t+2}+\ldots+R_{T} \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

FUNDAMENTALS

$$
v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right]
$$

FUNDAMENTALS

$$
v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right]
$$

Bellman equation

FUNDAMENTALS

$$
\begin{aligned}
& \nu_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& \text { Bellman equation }
\end{aligned}
$$

Evaluating the optimal policy, π^{*} :

FUNDAMENTALS

$$
\begin{aligned}
& \nu_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& \text { Bellman equation }
\end{aligned}
$$

Evaluating the optimal policy, π^{*} :

$$
v_{\pi^{*}}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi^{*}}\left(s^{\prime}\right)\right]
$$

FUNDAMENTALS

$$
\begin{aligned}
& \nu_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& \text { Bellman equation }
\end{aligned}
$$

Evaluating the optimal policy, π^{*} :

$$
v_{\pi^{*}}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi^{*}}\left(s^{\prime}\right)\right]
$$

Bellman optimality equation

FUNDAMENTALS

$$
\begin{aligned}
& \nu_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& \text { Bellman equation }
\end{aligned}
$$

Evaluating the optimal policy, π^{*} :

$$
v_{\pi^{*}}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi^{*}}\left(s^{\prime}\right)\right]
$$

Bellman optimality equation

FUNDAMENTALS

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\sum p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right] \\
& v_{\pi^{*}}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi^{*}}\left(s^{\prime}\right)\right] \\
& q_{\pi^{*}}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} q_{\pi^{*}}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

FUNDAMENTALS

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& =\sum p\left(s^{\prime}, r \mid s, a\right)\left[r+\sum \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

$$
q_{\pi^{*}}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} q_{\pi^{*}}\left(s^{\prime}, a^{\prime}\right)\right]
$$

FUNDAMENTALS

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& =\sum p\left(s^{\prime}, r \mid s, a\right)\left[r+\sum \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
v_{\pi}(s) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

$$
v_{\pi}(s)=\sum_{a} \pi(a \mid s) q_{\pi}(s, a)
$$

FUNDAMENTALS

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \quad v_{\pi}(s)=\sum_{a} \pi(a \mid s) q_{\pi}(s, a) \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

FUNDAMENTALS

$$
\begin{aligned}
q_{\pi}(s, a) & \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \quad v_{\pi}(s)=\sum_{a} \pi(a \mid s) q_{\pi}(s, a) \\
= & \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
= & \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right] \\
& \quad v_{\pi^{*}}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi^{*}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

FUNDAMENTALS

$$
\begin{aligned}
& v_{n}(s) \doteq \mathbb{E}_{n}\left[G_{t} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& v_{\pi}(s)=\sum_{a} \pi(a \mid s) q_{\pi}(s, a) \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi}\left(s^{\prime}\right)\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) q_{\pi}\left(s^{\prime}, a^{\prime}\right)\right] \\
& v_{\pi^{*}}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{\pi^{*}}\left(s^{\prime}\right)\right] \\
& q_{\pi^{*}}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} q_{\pi^{*}}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
- find the best policy (the control problem).

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
- find the best policy (the control problem).
> Methodology:

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:
, evaluate a given policy (the prediction problem), or

- find the best policy (the control problem).
> Methodology:
. Given a model of the world,

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
- find the best policy (the control problem).
, Methodology:
, Given a model of the world,
- iteratively improve estimates

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
, find the best policy (the control problem).
, Methodology:
- Given a model of the world,
- iteratively improve estimates
v with the help of bootstrapping.

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
, find the best policy (the control problem).
, Methodology:
- Given a model of the world,
- iteratively improve estimates
v with the help of bootstrapping.

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
, find the best policy (the control problem).
, Methodology:
, Given a model of the world,
- iteratively improve estimates
, with the help of bootstrapping.

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
, find the best policy (the control problem).
, Methodology:
, Given a model of the world,
- iteratively improve estimates
v with the help of bootstrapping.

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

CORE IDEAS OF DYNAMIC PROGRAMMING (DP)

, Goal:

- evaluate a given policy (the prediction problem), or
, find the best policy (the control problem).
, Methodology:
, Given a model of the world,
- iteratively improve estimates
v with the help of bootstrapping.

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

But we can (and do!) interact with the world.

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

> But we can (and do!) interact with the world.

- Can we use that experience to improve our estimates?

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

> But we can (and do!) interact with the world.

- Can we use that experience to improve our estimates?

$$
v_{t+1}(s) \rightarrow\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

> But we can (and do!) interact with the world.

- Can we use that experience to improve our estimates?

$$
v_{t+1}(s) \rightarrow\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

How can we improve estimates from a stream of data?

WE DO NOT USUALLY HAVE A MODEL OF THE WORLD

> But we can (and do!) interact with the world.

- Can we use that experience to improve our estimates?

$$
v_{t+1}(s) \rightarrow\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

How can we improve estimates from a stream of data?

$$
S_{0}, A_{0}, R_{1}, S_{1}, \ldots, S_{t}, A_{t}, R_{t+1}, S_{t+1}, \ldots
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

IMPROVING ESTIMATES FROM A STREAM OF DATA

(An example for intuition:
, Compute the average of a stream of samples

IMPROVING ESTIMATES FROM A STREAM OF DATA

- An example for intuition:
, Compute the average of a stream of samples
$x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots$

IMPROVING ESTIMATES FROM A STREAM OF DATA

- An example for intuition:

$$
\bar{x}_{N+1}=\frac{1}{N+1}\left(\sum_{i=1}^{N} x_{i}+x_{N+1}\right)
$$

- Compute the average of a stream of samples
$x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots$

IMPROVING ESTIMATES FROM A STREAM OF DATA

- An example for intuition:
- Compute the average of a stream of samples

$$
\begin{aligned}
\bar{x}_{N+1} & =\frac{1}{N+1}\left(\sum_{i=1}^{N} x_{i}+x_{N+1}\right) \\
& =\frac{N}{N+1} \frac{1}{N} \sum_{i=1}^{N} x_{i}+\frac{1}{N+1} x_{N+1}
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

- An example for intuition:
- Compute the average of a stream of samples

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots
$$

$$
\begin{aligned}
\bar{x}_{N+1} & =\frac{1}{N+1}\left(\sum_{i=1}^{N} x_{i}+x_{N+1}\right) \\
& =\frac{N}{N+1} \frac{1}{N} \sum_{i=1}^{N} x_{i}+\frac{1}{N+1} x_{N+1} \\
& =\frac{N}{N+1} \bar{x}_{N}+\frac{1}{N+1} x_{N+1}
\end{aligned}
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

- An example for intuition:
- Compute the average of a stream of samples
$x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots$

$$
\begin{aligned}
\bar{x}_{N+1} & =\frac{1}{N+1}\left(\sum_{i=1}^{N} x_{i}+x_{N+1}\right) \\
& =\frac{N}{N+1} \frac{1}{N} \sum_{i=1}^{N} x_{i}+\frac{1}{N+1} x_{N+1} \\
& =\frac{N}{N+1} \bar{x}_{N}+\frac{1}{N+1} x_{N+1} \\
& =\left(1-\frac{1}{N+1}\right) \bar{x}_{N}+\frac{1}{N+1} x_{N+1}
\end{aligned}
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

- An example for intuition:
- Compute the average of a stream of samples
$x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots$

$$
\begin{aligned}
\bar{x}_{N+1} & =\frac{1}{N+1}\left(\sum_{i=1}^{N} x_{i}+x_{N+1}\right) \\
& =\frac{N}{N+1} \frac{1}{N} \sum_{i=1}^{N} x_{i}+\frac{1}{N+1} x_{N+1} \\
& =\frac{N}{N+1} \bar{x}_{N}+\frac{1}{N+1} x_{N+1} \\
& =\left(1-\frac{1}{N+1}\right) \bar{x}_{N}+\frac{1}{N+1} x_{N+1} \\
& =\bar{x}_{N}+\frac{1}{N+1}\left(x_{N+1}-\bar{x}_{N}\right)
\end{aligned}
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

> An example for intuition:

- Compute the average of a stream of samples

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{N}, x_{N+1}, \ldots
$$

$$
\begin{aligned}
\bar{x}_{N+1} & =\frac{1}{N+1}\left(\sum_{i=1}^{N} x_{i}+x_{N+1}\right) \\
& =\frac{N}{N+1} \frac{1}{N} \sum_{i=1}^{N} x_{i}+\frac{1}{N+1} x_{N+1} \\
& =\frac{N}{N+1} \bar{x}_{N}+\frac{1}{N+1} x_{N+1} \\
& =\left(1-\frac{1}{N+1}\right) \bar{x}_{N}+\frac{1}{N+1} x_{N+1} \\
& =\bar{x}_{N}+\frac{1}{N+1}\left(x_{N+1}-\bar{x}_{N}\right) \\
\bar{x}_{N+1} & =\bar{x}_{N}+\alpha\left(x_{N+1}-\bar{x}_{N}\right)
\end{aligned}
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

$$
\bar{x}_{N+1}=\bar{x}_{N}+\alpha\left(x_{N+1}-\bar{x}_{N}\right)
$$

IMPROVING ESTIMATES FROM A STREAM OF DATA

$$
\bar{x}_{N+1}=\bar{x}_{N}+\alpha\left(x_{N+1}-\bar{x}_{N}\right)
$$

new_estimate = old_estimate + stepsize* (new_target - old_estimate)

IMPROVING ESTIMATES FROM A STREAM OF DATA

$$
\bar{x}_{N+1}=\bar{x}_{N}+\alpha\left(x_{N+1}-\bar{x}_{N}\right)
$$

new_estimate = old_estimate + stepsize* (new_target - old_estimate)
$\mathrm{DP} \quad v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]$

IIMPROVING ESTIMATES FROM A STREAM OF DATA

$$
\bar{x}_{N+1}=\bar{x}_{N}+\alpha\left(x_{N+1}-\bar{x}_{N}\right)
$$

new_estimate = old_estimate + stepsize* (new_target - old_estimate)
$\mathrm{DP} \quad v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]$
$\mathrm{TD} \quad v_{t+1}(s)=v_{t}(s)+\alpha\left[\left(r+v_{t}\left(s^{\prime}\right)\right)-v_{t}(s)\right]$

TEMPORAL-DIFFERENCE (TD) LEARNING

TEMPORAL-DIFFERENCE (TD) LEARNING

Algorithm : Tabular TD learning to estimate v_{π}
Input: The target policy π
Algorithm parameters: step size $\alpha \in(0,1]$
1 Initialize $V(s)$, for all $s \in \mathcal{S}$, arbitrarily (e.g., to zero)
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action according to π in S
5 Take action A, observe R, S^{\prime}
$6 \quad V(S) \leftarrow V(S)+\alpha\left[R+V\left(S^{\prime}\right)-V(S)\right]$
$7 \quad S \leftarrow S^{\prime}$
8 end
9 return V

CONTROL: EXPLORATION VS EXPLOITATION

CONTROL: EXPLORATION VS EXPLOITATION

Simple heuristic:

- with a small probability, pick a random action

CONTROL: EXPLORATION VS EXPLOITATION

Simple heuristic:

- with a small probability, pick a random action

CONTROL: EXPLORATION VS EXPLOITATION

Simple heuristic:

- with a small probability, pick a random action

- With probability ϵ, pick an action randomly
- With probability 1- ϵ, pick the 'greedy' action

CONTROL: EXPLORATION VS EXPLOITATION

, Simple heuristic:

- with a small probability, pick a random action

- With probability ϵ, pick an action randomly
- With probability 1- ϵ, pick the 'greedy' action
ϵ-greedy action selection

CONTROL ALGORITHM: SARSA

```
Algorithm : SARSA to estimate \(Q \approx Q_{\pi^{*}}\)
Parameters: step size \(\alpha \in(0,1]\)
1 Initialize \(Q(s, a)\), for all \(s \in \mathcal{S}, a \in \mathcal{A}\), arbitrarily (e.g., to zero)
2 Observe initial state \(S\)
3 for each time step do
\(4 \quad A \leftarrow\) action in \(S\) according to policy derived from Q (e.g., \(\epsilon\)-greedy)
5 Take action \(A\), observe \(R, S^{\prime}\)
\(6 \quad A^{\prime} \leftarrow\) action in \(S^{\prime}\) according to policy derived from Q (e.g., \(\epsilon\)-greedy)
\(7 \quad Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+Q\left(S^{\prime}, A^{\prime}\right)-Q(S, A)\right]\)
\(8 \quad S \leftarrow S^{\prime}\)
9 end
```


CONTROL ALGORITHM: SARSA

```
Algorithm : SARSA to estimate \(Q \approx Q_{\pi^{*}}\)
Parameters: step size \(\alpha \in(0,1]\)
1 Initialize \(Q(s, a)\), for all \(s \in \mathcal{S}, a \in \mathcal{A}\), arbitrarily (e.g., to zero)
2 Observe initial state \(S\)
3 for each time step do
\(4 \quad A \leftarrow\) action in \(S\) according to policy derived from Q (e.g., \(\epsilon\)-greedy)
5 Take action \(A\), observe \(R, S^{\prime}\)
\(6 \quad A^{\prime} \leftarrow\) action in \(S^{\prime}\) according to policy derived from Q (e.g., \(\epsilon\)-greedy)
\(7 \quad Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+Q\left(S^{\prime}, A^{\prime}\right)-Q(S, A)\right]\)
\(8 \quad S \leftarrow S^{\prime}\)
9 end
```

"On-policy"

CONTROL ALGORITHM: Q-LEARNING

Algorithm : Q-learning to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
1 Initialize $Q(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$, arbitrarily (e.g., to zero)
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy)
5 Take action A, observe R, S^{\prime}
$6 \quad A^{\prime} \leftarrow$ action in S^{\prime} according to the greedy policy derived from Q
$7 \quad Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+Q\left(S^{\prime}, A^{\prime}\right)-Q(S, A)\right]$
$8 \quad S \leftarrow S^{\prime}$
end

CONTROL ALGORITHM: Q-LEARNING

Algorithm : Q-learning to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
1 Initialize $Q(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$, arbitrarily (e.g., to zero)
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy)
5 Take action A, observe R, S^{\prime}
$6 \quad A^{\prime} \leftarrow$ action in S^{\prime} according to the greedy policy derived from Q
$7 \quad Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+Q\left(S^{\prime}, A^{\prime}\right)-Q(S, A)\right]$
$8 \quad S \leftarrow S^{\prime}$
end

$$
Q(S, A)=Q(S, A)+\alpha\left[R+\max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right]
$$

CONTROL ALGORITHM: Q-LEARNING

Algorithm : Q-learning to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
1 Initialize $Q(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$, arbitrarily (e.g., to zero)
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy)
5 Take action A, observe R, S^{\prime}
$6 \quad A^{\prime} \leftarrow$ action in S^{\prime} according to the greedy policy derived from Q
$7 \quad Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+Q\left(S^{\prime}, A^{\prime}\right)-Q(S, A)\right]$
$8 \quad S \leftarrow S^{\prime}$
9 end

"Off-policy"

$$
Q(S, A)=Q(S, A)+\alpha\left[R+\max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right]
$$

PLANNING USING A MODEL OF THE WORLD

PLANNING USING A MODEL OF THE WORLD

, We studied one way to use a model with DP:

PLANNING USING A MODEL OF THE WORLD

, We studied one way to use a model with DP:

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} \underline{p\left(s^{\prime}, r \mid s, a\right)}\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

PLANNING USING A MODEL OF THE WORLD

> We studied one way to use a model with DP:

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

, We can also use the model as a substitute for real-world experience:

PLANNING USING A MODEL OF THE WORLD

> We studied one way to use a model with DP:

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

, We can also use the model as a substitute for real-world experience:

observation

PLANNING USING A MODEL OF THE WORLD

- We studied one way to use a model with DP:

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} \underline{p\left(s^{\prime}, r \mid s, a\right)}\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

- We can also use the model as a substitute for real-world experience:

PLANNING USING A MODEL OF THE WORLD

- We studied one way to use a model with DP:

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} \underline{p\left(s^{\prime}, r \mid s, a\right)}\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

- We can also use the model as a substitute for real-world experience:

$$
v_{t+1}(S)=v_{t}(S)+\alpha\left[R+v_{t}\left(S^{\prime}\right)-v_{t}(S)\right]
$$

PLANNING USING A MODEL OF THE WORLD

- We studied one way to use a model with DP:

$$
v_{t+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} \underline{p\left(s^{\prime}, r \mid s, a\right)}\left[r+v_{t}\left(s^{\prime}\right)\right]
$$

- We can also use the model as a substitute for real-world experience:

$$
v_{t+1}(S)=v_{t}(S)+\alpha\left[R+v_{t}\left(S^{\prime}\right)-v_{t}(S)\right]
$$

LEARNING A MODEL FROM EXPERIENCE

LEARNING A MODEL FROM EXPERIENCE

Where do models come from?

LEARNING A MODEL FROM EXPERIENCE

Where do models come from?
, They can also be learned from experience.

LEARNING A MODEL FROM EXPERIENCE

Where do models come from?
, They can also be learned from experience.

A a 1 B b 1 T
Ab0Ca 3 T
A a 1 Bat 0
Ab0Cb0T

DYNA: INTEGRATING LEARNING AND PLANNING

DYNA: INTEGRATING LEARNING AND PLANNING

Algorithm : Dyna to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
${ }^{1}$ Initialize $Q(s, a)$ and $\operatorname{Model}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy)
5 Take action A, observe R, S^{\prime}

DYNA: INTEGRATING LEARNING AND PLANNING

Algorithm : Dyna to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
${ }^{1}$ Initialize $Q(s, a)$ and $\operatorname{Model}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
2 Observe initial state S
3 for each time step $\mathbf{d o}$
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy) 5 Take action A, observe R, S^{\prime}
6 U Update model: $\operatorname{Model}(S, A) \leftarrow S^{\prime}, R$
Learning the model
7 while time to plan do
random previously observed state
random previously picked action in S

DYNA: INTEGRATING LEARNING AND PLANNING

Algorithm : Dyna to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
${ }^{1}$ Initialize $Q(s, a)$ and $\operatorname{Model}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy)
5 Take action A, observe R, S^{\prime}
6 \{Update model: $\operatorname{Model}(S, A) \leftarrow S^{\prime}, R$
Learning the model
while time to plan do
$8 \quad S_{p} \leftarrow$ random previously observed state
$A_{p} \leftarrow$ random previously picked action in S
Planning with
$R_{p}, S_{p}^{\prime} \leftarrow \operatorname{Model}\left(S_{p}, A_{p}\right)$
$Q\left(S_{p}, A_{p}\right) \leftarrow Q\left(S_{p}, A_{p}\right)+\alpha\left[R_{p}+\max _{a} Q\left(S_{p}^{\prime}, a\right)-Q\left(S_{p}, A_{p}\right)\right]$

DYNA: INTEGRATING LEARNING AND PLANNING

Algorithm : Dyna to estimate $Q \approx Q_{\pi^{*}}$
Parameters: step size $\alpha \in(0,1]$
1 Initialize $Q(s, a)$ and $\operatorname{Model}(s, a)$, for all $s \in \mathcal{S}, a \in \mathcal{A}$
2 Observe initial state S
3 for each time step do
$4 \quad A \leftarrow$ action in S according to policy derived from Q (e.g., ϵ-greedy)
Take action A, observe R, S^{\prime}
$\left\{\right.$ Update model: $\operatorname{Model}(S, A) \leftarrow S^{\prime}, R$
Learning the model
while time to plan do
$\int\left\{\begin{array}{l}S_{p} \leftarrow \text { random previously observed state } \\ A_{p} \leftarrow \text { random previously picked action in } S\end{array}\right.$
Planning with
$R_{p}, S_{p}^{\prime} \leftarrow \operatorname{Model}\left(S_{p}, A_{p}\right)$
$Q\left(S_{p}, A_{p}\right) \leftarrow Q\left(S_{p}, A_{p}\right)+\alpha\left[R_{p}+\max _{a} Q\left(S_{p}^{\prime}, a\right)-Q\left(S_{p}, A_{p}\right)\right]$
end
$S \leftarrow S^{\prime}$
4 end

OUTLINE

, Dynamic Programming (DP)

- Temporal-Difference (TD) Learning
, Model-based RL
, Policy Optimization

So far we have used value estimates to improve the policy.

So far we have used value estimates to improve the policy.

So far we have used value estimates to improve the policy.

- Can we directly improve the policy?

So far we have used value estimates to improve the policy.

- Can we directly improve the policy?

So far we have used value estimates to improve the policy.

- Can we directly improve the policy?

$$
\pi_{0} \rightarrow \pi_{1} \rightarrow \pi_{2} \quad \cdots \quad \rightarrow \pi_{n-1} \quad \rightarrow \pi^{*}
$$

So far we have used value estimates to improve the policy.

- Can we directly improve the policy?

$$
\pi_{0} \rightarrow \pi_{1} \rightarrow \pi_{2} \quad \cdots \quad \rightarrow \pi_{n-1} \quad \rightarrow \pi^{*}
$$

POLICY PARAMETRIZATION

POLICY PARAMETRIZATION

> In value-based methods, we select actions based on the learned value function:

POLICY PARAMETRIZATION

> In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

POLICY PARAMETRIZATION

- In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

- In policy-based methods, we need not consult the value function to select actions.

POLICY PARAMETRIZATION

- In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

- In policy-based methods, we need not consult the value function to select actions.
> Instead, we use action preferences that are learned.

POLICY PARAMETRIZATION

- In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

- In policy-based methods, we need not consult the value function to select actions.
> Instead, we use action preferences that are learned.

$$
h(s, a), \forall s, a
$$

POLICY PARAMETRIZATION

- In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

- In policy-based methods, we need not consult the value function to select actions.
- Instead, we use action preferences that are learned.

$$
h(s, a), \forall s, a \quad \pi(a \mid s)=\frac{h(s, a)}{\sum_{b} h(s, b)}
$$

POLICY PARAMETRIZATION

- In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

- In policy-based methods, we need not consult the value function to select actions.
- Instead, we use action preferences that are learned.

$$
h(s, a), \forall s, a
$$

$$
\pi(a \mid s)=\frac{h(s, a)}{\sum_{b} h(s, b)} \text { or } \frac{e^{h(s, a)}}{\sum_{b} e^{h(s, b)}}
$$

POLICY PARAMETRIZATION

- In value-based methods, we select actions based on the learned value function:

$$
\pi(s)=\arg \max _{a} Q(s, a)
$$

- In policy-based methods, we need not consult the value function to select actions.
- Instead, we use action preferences that are learned.

$$
h(s, a), \forall s, a
$$

$$
\pi(a \mid s)=\frac{h(s, a)}{\sum_{b} h(s, b)} \text { or } \frac{e^{h(s, a)}}{\sum_{b} e^{h(s, b)}}
$$

LEARNING ACTION PREEERENCES

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.
, Objective: maximize amount of reward obtained

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.
, Objective: maximize amount of reward obtained
> Method: stochastic gradient ascent

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.
, Objective: maximize amount of reward obtained
> Method: stochastic gradient ascent

$$
\pi(a)=\frac{e^{H(a)}}{\sum_{b} e^{H(b)}}
$$

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.
, Objective: maximize amount of reward obtained
> Method: stochastic gradient ascent

$$
\begin{aligned}
& \pi(a)=\frac{e^{H(a)}}{\sum_{b} e^{H(b)}} \\
& H_{t+1}\left(A_{t}\right) \doteq H_{t}\left(A_{t}\right)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(1-\pi\left(A_{t}\right)\right)
\end{aligned}
$$

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.
, Objective: maximize amount of reward obtained
> Method: stochastic gradient ascent

$$
\begin{aligned}
& \pi(a)=\frac{e^{H(a)}}{\sum_{b} e^{H(b)}} \\
& H_{t+1}\left(A_{t}\right) \doteq H_{t}\left(A_{t}\right)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(1-\pi\left(A_{t}\right)\right) \\
& H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)(0-\pi(a)) \quad \forall a \neq A_{t}
\end{aligned}
$$

LEARNING ACTION PREFERENCES

, Consider a simple case: there is just one state.
, Objective: maximize amount of reward obtained

- Method: stochastic gradient ascent

$$
\begin{aligned}
& \pi(a)=\frac{e^{H(a)}}{\sum_{b} e^{H(b)}} \quad \text { "Gradient-Bandit Algorithm" } \\
& H_{t+1}\left(A_{t}\right) \doteq H_{t}\left(A_{t}\right)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(1-\pi\left(A_{t}\right)\right) \\
& H_{t+1}(a) \doteq H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)(0-\pi(a)) \quad \forall a \neq A_{t}
\end{aligned}
$$

OUTLINE

, Dynamic Programming (DP)

- Temporal-Difference (TD) Learning
, Model-based RL
> Policy Optimization

OUTLINE

, Dynamic Programming (DP)

- Temporal-Difference (TD) Learning
, Model-based RL
, Policy Optimization

Further reading:
Sutton \& Barto, 2018, Reinforcement Learning: An Introduction, 2nd Edition
http://incompleteideas.net/book/the-book.html

THANK YOU

Questions?

(4) abhisheknaik96.github.io
abhishek.naik@ualberta.ca
anaik96

