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OUTLINE

» Dynamic Programming (DP)
» Temporal-Difference (TD) Learning

» Model-based RL

» Policy Optimization
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Vip1(8) = [” T Vt(S,)]
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Xnyi1 = Xy +a Xy, — Xy)

new_estimate = old_estimate + stepsize * (new_target - old_estimate)

DP v, (s) = za n(als) ZS,J p(s,r|s,a) [r + vt(s’)]

TD V1 (8) = v,(s) + a[(r + vt(s’)) — vt(s)]
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(TD)

Algorithm : Tabular TD learning to estimate v

Input: The target policy m

Algorithm parameters: step size a € (0, 1]
Initialize V' (s), for all s € §, arbitrarily (e.g., to zero)
Observe initial state S

for each time step do

A < action according to 7 in S

Take action A, observe R, .S’

V(S) < V(S)+ «a [R. + V(S") = V(S )]
S« S’

end
return V'
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pick an action randomly
o With probability 1-¢,
pick the ‘greedy’ action

r\ ] l% { e« With probability €, ,

— \  €-greedy action selection  }



SARSA

Algorithm : SARSA to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize Q) (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S, A) + « [R + Q(S", A") — Q(S, 4)}
S« 5’
end




SARSA

Algorithm : SARSA to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize Q) (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A" « action in S” according to policy derived from Q (e.g., e-greedy)
Q(S,A) + Q(S, A) + « [R + Q(S", A") — Q(S, 4)}
S« 5’
end

“On-policy”



(-LEARNING

Algorithm : Q-learning to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to the greedy policy derived from Q

Q(S,A) + Q(S, A) + o [R+Q(S', A") — Q(S, A)]
S « S’
end




(-LEARNING

Algorithm : Q-learning to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to the greedy policy derived from Q

Q(S,A) + Q(S, A) + o [R+Q(S', A") — Q(S, A)]
S « S’
end

O(S,A) = (S, A) + a|R + max, O(S",a) — O(S, A)|



(-LEARNING

Algorithm : Q-learning to estimate () ~ ()~

Parameters: step size o € (0, 1]
Initialize (s, a), forall s € S, a € A, arbitrarily (e.g., to zero)
Observe initial state S
for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’
A’ + action in S’ according to the greedy policy derived from Q

Q(S,A) + Q(S, A) + o [R+Q(S', A") — Q(S, A)]
S « S’
end

“Off-policy”

O(S,A) = (S, A) + a|R + max, O(S",a) — O(S, A)|
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» Where do models come from?

» They can also be learned from experience.

Aal1Bb1T
AbO0Ca3T
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3 for each time step do
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Algorithm : Dyna to estimate () =~ ()~

Parameters: step size o € (0, 1]
1 Initialize Q(s,a) and Model(s,a), forall s € S,a € A
2 Observe initial state .S
3 for each time step do
A < action in .S according to policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’

Update model: Model(S, A) < S', R

while time to plan do

S, < random previously observed state

A, < random previously picked action in .S

R,,S), < Model(S),, A,)

11 Q(Sp, Ap) + Q(Sp, Ap) + a | R, + max, Q(S,,a) — Q(Sp, Ap)l
12 end

13 S+ S

14 end

Planning with
the learned model
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» So far we have used value estimates to improve the policy.

» Can we directly improve the policy?

Ty — | — My eee  —> T, — TTF

Yes!
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POLICY PARAMETRIZATION

» In value-based methods, we select actions based on the
learned value function:

7(s) = arg max, O(s, a)

» In policy-based methods, we need not consult the value
function to select actions.

» Instead, we use action preferences that are learned.

h(s,a) PLLCED
or
2., (s, b) >, ehth)

“soft-max”

h(s,a), Vs,a n(als) =
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LEARNING ACTION PREFERENCES

» Consider a simple case: there is just one state.
» Objective: maximize amount of reward obtained

» Method: stochastic gradient ascent

eH(a)

n(a) = “Gradient-Bandit Algorithm”
Y eHo) 9

H,\(A) =H(A)+a(R—R)(1-xA))
H,(a) = H(a)+ a(R,— R,) (0 — n(a)) Va#A,
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Further reading:

Sutton & Barto, 2018, Reinforcement Learning: An Introduction, 2nd Edition
http://incompleteideas.net/book/the-book.html




THANK YOU

Questions?

@) abhisheknaik96.github.io
B abhishek.naik@ualberta.ca
YW anaik96



