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▸ Continual / never-ending / lifelong learning:  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▸ Non-stationarity is orthogonal to the episodic or continuing nature of 
the agent-environment interaction.

▸ Continuing problems can have non-stationary aspects. 

▸ Continuous problems:  
have continuous state and/or action spaces

▸ Continuing problems can have continuous state/action spaces.
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▸ Objective: maximize the discounted sum of rewards across states

Gt = Rt+1 + γRt+2 + γ2Rt+3 + …

▸ Formulation widely studied first in the DP literature then RL.

▸ Solution methods: SARSA, Q-learning, etc.

▸ Several TD-based methods exist with theoretical guarantees in the linear 
function approximation setting (e.g., ETD, GQ)

▸ Non-linear versions successfully applied in several episodic applications 
(e.g., DQN on Atari).

▸ Applications to continuing problems scarce, despite the notion of 
discounting originally introduced for the continuing setting. 



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
DON’T REALLY APPLY AS IS IN CONTINUING PROBLEMS

THE STATE OF RESEARCH IN THE CONTINUING SETTING



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
DON’T REALLY APPLY AS IS IN CONTINUING PROBLEMS

THE STATE OF RESEARCH IN THE CONTINUING SETTING

▸ Pardo et al. (2018) highlighted issues  
with artificial time limits.  
 

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in reinforcement learning.



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
DON’T REALLY APPLY AS IS IN CONTINUING PROBLEMS

THE STATE OF RESEARCH IN THE CONTINUING SETTING

▸ Pardo et al. (2018) highlighted issues  
with artificial time limits.  
 

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in reinforcement learning.



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
DON’T REALLY APPLY AS IS IN CONTINUING PROBLEMS

THE STATE OF RESEARCH IN THE CONTINUING SETTING

▸ Pardo et al. (2018) highlighted issues  
with artificial time limits.  
 

▸ Machado et al.’s (2020) results showed resets  
might be sweeping challenges of exploration under the rug. 

Machado, M. C., Bellemare, M. G., Bowling, M. (2020). Count-based exploration with the successor representation.
Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in reinforcement learning.



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
DON’T REALLY APPLY AS IS IN CONTINUING PROBLEMS

THE STATE OF RESEARCH IN THE CONTINUING SETTING

▸ Pardo et al. (2018) highlighted issues  
with artificial time limits.  
 

▸ Machado et al.’s (2020) results showed resets  
might be sweeping challenges of exploration under the rug. 

Machado, M. C., Bellemare, M. G., Bowling, M. (2020). Count-based exploration with the successor representation.
Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in reinforcement learning.

“… desirable to use time limits in order to frequently reset the  
environment and increase the diversity of the agent’s experiences”



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
DON’T REALLY APPLY AS IS IN CONTINUING PROBLEMS

THE STATE OF RESEARCH IN THE CONTINUING SETTING

▸ Pardo et al. (2018) highlighted issues  
with artificial time limits.  
 

▸ Machado et al.’s (2020) results showed resets  
might be sweeping challenges of exploration under the rug. 

▸ Platanios et al. (2020, Case Study #1) found common solution methods like 
DQN and PPO failed in the Jelly Bean World, a continuing domain. 

Machado, M. C., Bellemare, M. G., Bowling, M. (2020). Count-based exploration with the successor representation.
Platanios, E. A., Saparov, A., Mitchell, T. (2020). Jelly Bean World: A Testbed for Never-Ending Learning.

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in reinforcement learning.

“… desirable to use time limits in order to frequently reset the  
environment and increase the diversity of the agent’s experiences”



DISCOUNTED METHODS FOR EPISODIC PROBLEMS 
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THE STATE OF RESEARCH IN THE CONTINUING SETTING

▸ Pardo et al. (2018) highlighted issues  
with artificial time limits.  
 

▸ Machado et al.’s (2020) results showed resets  
might be sweeping challenges of exploration under the rug. 

▸ Platanios et al. (2020, Case Study #1) found common solution methods like 
DQN and PPO failed in the Jelly Bean World, a continuing domain. 

▸ Sutton and Barto (2018, Ch 10) and Naik et al. (2019) claimed that discounting 
is incompatible with continuing control with function approximation.

Machado, M. C., Bellemare, M. G., Bowling, M. (2020). Count-based exploration with the successor representation.
Platanios, E. A., Saparov, A., Mitchell, T. (2020). Jelly Bean World: A Testbed for Never-Ending Learning.

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in reinforcement learning.

“… desirable to use time limits in order to frequently reset the  
environment and increase the diversity of the agent’s experiences”

Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Naik, A., Shariff, R., Yasui, N., Sutton, R. S. (2019). Discounted Reinforcement Learning Is Not an Optimization Problem.
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▸ Objective: maximize the average reward over time

r(π) ≐ lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]

▸ Formulation widely studied in the DP literature, not much in RL.

▸ Solution methods: RVI Q-learning, Differential Q-learning, etc.

▸ Most theoretical results in the function approximation setting are 
restricted to the prediction problem. 

▸ Not much empirical experience, especially with large-scale problems.
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C-SUITE

▸ Two broad categories: 

1. Continuing problems from the literature

2. New problems (inspired from the real world) 

▸ Can also classify the problems as:

1. Small-scale pedagogical problems

2. Large-scale challenge problems
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▸ MDPs such as RiverSwim

▸ Other tabular problems such as the Access-Control 
Queueing Task

▸ Games such as PuckWorld, Catcher

▸ Classic control tasks such as Pendulum,  
Acrobot, Walker, Hopper, Reacher, Swimmer
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2. NEW PROBLEMS (INSPIRED FROM THE REAL WORLD)
C-SUITE

▸ Adaptive parking pricing 

▸ Intruder detection

▸ Aisle clean-up

▸ Cache management / Inventory control

▸ Job/packet scheduling

▸ Local temp/humidity control

▸ Powergrid management

CityLearn Challenge

Prashanth et al. (2014)

https://sites.google.com/view/citylearnchallenge/home
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C-SUITE

▸ Compare the discounted and average-reward formulations 
empirically

▸ Get more experience with average-reward methods, especially in 
the function approximation setting

▸ Come with up new/better solution methods for continuing 
problems 

▸ More generally, explore connections between the two 
formulations and perhaps leverage the best of both worlds

▸ Add more pedagogical as well as challenge problems to C-suite

The end: to study problem formulations and solution methods for 
continuing problems, enroute to AI.
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