REINFORCEMENT LEARNING: WHAT, WHEN, HOW

NRC-DT Knowledge Exchange Seminar Dec 4 2024

Abhishek Naik

Formerly:

OUTLINE

- What is reinforcement learning (RL)?
- When is it applicable?
- What is my focus?
- > Should you be considering RL?

REINFORCEMENT LEARNING IS A PARADIGM OF LEARNING FROM INTERACTIONS

Learning from experience by trial and error

SOME CHARACTERISTICS OF THE RL FRAMEWORK

- Sequential decision-making
- Evaluative feedback
- Delayed feedback

- Independent decisions
- Instructive feedback
- Immediate feedback

SOME IMPRESSIVE DEMONSTRATIONS OF RL

EXAMPLES OF SEQUENTIAL DECISION-MAKING PROBLEMS

Optimal allocation of solar power in a satellite, setting water-filtration-plant parameters, routing of network traffic for dynamic topologies, intelligent recommendation systems, controlling robotic limbs to perform diverse household tasks, controlling deformable mirrors for optical satellite communication, ...

OUTLINE

- What is reinforcement learning (RL)?
- When is it applicable?
- What is my focus?
- > Should you be considering RL?

SIMPLE AND PRACTICAL ALGORITHMS TO LEARN THROUGHOUT AN AGENT'S LIFETIME

- Find the best way to behave given constraints
- Learn continually not learn-freeze-deploy
- Learn online and incrementally

Use ideas developed from first principles

REWARD CENTERING

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

Estimate the average reward and subtract it from the observed rewards

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t \right] + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t)$$

NO INSTABILITY WITH LARGE DISCOUNT FACTORS

AccessControl (tabular)

NO INSTABILITY WITH LARGE DISCOUNT FACTORS

PuckWorld (linear FA)

NO INSTABILITY WITH LARGE DISCOUNT FACTORS

Pendulum (non-linear FA)

TRENDS ARE CONSISTENT ACROSS PARAMETERS

AccessControl (tabular)

THE SPECIAL CASE OF $\gamma = 1$

$$S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$$

$$\max_{\pi} r(\pi)$$

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

- Fundamental one-step average-reward algorithms
 - learning and planning
 - on- and off-policy
 - prediction and control
- More efficient multi-step versions using traces
- All the extensions to the options framework

SOME APPLICATION-ORIENTED PROJECTS

SHOULD YOU BE CONSIDERING RL?

- RL is a framework for sequential decision-making problems
 - Actions can have long-term consequences
 - Feedback is evaluative in nature
 - The agent generates its own data
- RL algorithms enable *learning* the best way to behave, via trial and error

THANK YOU

Questions?

STRETCH SLIDES

TEMPORAL-DIFFERENCE LEARNING: AN ALGORITHM TO MAXIMIZE LONG-TERM REWARD

$$\begin{split} P_{new} &= (1 - \alpha)P_{old} + \alpha(P_{correct}) \\ P_{new} &= (1 - \alpha)P_{old} + \alpha(P_{better}) \\ &= P_{old} + \alpha(P_{better} - P_{old}) \end{split}$$

$$V_{new}(s) = V_{old}(s) + \alpha (R + V_{old}(s') - V_{old}(s))$$
 TD error

inspired from psychology and constrained by computation

TD LEARNING BEST FITS VARIOUS PSYCH/NEURO DATA

explains blocking and higher-order conditioning

 predicted the reversal of blocking — later confirmed by Kehoe et al. (1987)

experimental support for the reward-prediction-error hypothesis:
 Schultz et al. (1997)

> causal support using optogenetics: Steinberg et al. (2013)