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A WORKING DEFINITION OF INTELLIGENCE

“Intelligence is the computational part of

the ability to achieve goals”
- John McCarthy

non-computational parts: being stronger, having better sensors



THE COMMON MODEL OF THE DECISION-MAKER
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THE REWARD HYPOTHESIS

“... all of what we mean by goals and purposes
can be well thought of as
maximization of the expected value of the cumulative sum
of a received scalar signal (reward).”

- Michael Littman, Rich Sutton



TEMPORAL-DIFFERENCE LEARNING:
AN ALGORITHM TO MAXIMIZE LONG-TERM REWARD

P new — (1 I a)P old T a(P correct)
P new — (1 I a)P old T CI(P better)

=P old + a(P better_P ola’)
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iInspired from psychology and constrained by computation



TD LEARNING BEST FITS VARIOUS PSYCH/NEURO DATA

» explains blocking and higher-order conditioning

» predicted the reversal of blocking — later confirmed by
Kehoe et al. (1987)

» experimental support for the reward-prediction-error
hypothesis: Schultz et al. (1997)

» causal support using optogenetics: Steinberg et al. (2013)



TAKEAWAYS

» There are many commonalities in how our related fields are
thinking about the phenomenon of intelligent behavior.

Let’s use some common terminology to foster more collaborations!

» To this common model of the agent, RL adds:
» the reward hypothesis,

» general and scalable algorithms to maximize reward,
some of which are biologically plausible.

My poster is about a more efficient variant of TD-learning, specific to lifelong learning!
(Group A)
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