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  Theorem 1 (sketch)
 
If  1) the MDP is unichain,  
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 to ,  to a solution of the Bellman optimality equation. R̄t r(π*) Qt



CONTROL

δt ≐ Rt+1 − R̄t + max
a

Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM



CONTROL

δt ≐ Rt+1 − R̄t + max
a

Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM

Qt+1(St, At) = Qt(St, At) + αt(Rt+1−f(Qt)

+ max
a

Qt(St+1, a) − Qt(St, At))

RVI Q-learning



CONTROL

Timesteps



CONTROL
▸ Two-state MDP 
▸ state 0 is transient

+1 +2

0.9

0 1

0.1

-10

a

b

Timesteps



CONTROL
▸ Two-state MDP 
▸ state 0 is transient

▸ Reference state-action  
pair: (0, a) 
 
i.e.,   

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

Timesteps



CONTROL
▸ Two-state MDP 
▸ state 0 is transient

▸ Reference state-action  
pair: (0, a) 
 
i.e.,   

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

RVI Q-learning Differential Q-learning

Q(1,a)

Q(0,a)

Q(0,b)

Q(0,b)Q(0,a)

Q(1,a)

Timesteps

( = R̄ )

R̄
Value

estimates 
(50 runs)

Timesteps Timesteps



CONTROL
▸ Two-state MDP 
▸ state 0 is transient

▸ Reference state-action  
pair: (0, a) 
 
i.e.,   

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

RVI Q-learning Differential Q-learning

Q(1,a)

Q(0,a)

Q(0,b)

Q(0,b)Q(0,a)

Q(1,a)

Timesteps

( = R̄ )

R̄
Value

estimates 
(50 runs)

Timesteps Timesteps



CONTROL
▸ Two-state MDP 
▸ state 0 is transient

▸ Reference state-action  
pair: (0, a) 
 
i.e.,   

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

RVI Q-learning diverges if reference state is transient.

RVI Q-learning Differential Q-learning

Q(1,a)

Q(0,a)

Q(0,b)

Q(0,b)Q(0,a)

Q(1,a)

Timesteps

( = R̄ )

R̄
Value

estimates 
(50 runs)

Timesteps Timesteps



CONTROL
ENVIRONMENT

▸ Access Control Queueing Task

4 18 4 2



CONTROL
ENVIRONMENT

▸ Access Control Queueing Task

4 18 4 2

▸ 10 servers, 4 priorities 

▸ p = 0.06



CONTROL
ENVIRONMENT

▸ Access Control Queueing Task

4 18 4 2

6 ft

▸ 10 servers, 4 priorities 

▸ p = 0.06



CONTROL
EXPERIMENT

▸  

▸  

▸  

▸ 80,000 steps 

▸ 30 runs 
 

▸ Reference states: 

▸ 0, 2, 4, 6, 8, 10  
free servers  

▸ priority 8   

▸ accept

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1



CONTROL
EXPERIMENT

▸  

▸  

▸  

▸ 80,000 steps 

▸ 30 runs 
 

▸ Reference states: 

▸ 0, 2, 4, 6, 8, 10  
free servers  

▸ priority 8   

▸ accept

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

Reward 
rate 

(30 runs)

Timesteps

Differential Q-learning

RVI Q-learning



CONTROL
EXPERIMENT

α

η = 0.125 η = 2

η = 1

η = 0.5

η = 0.25

Differential Q-learning

Reward
rate  
over 

80k steps 
(30 runs)

α

RVI Q-learning

Ref. state #35

Ref. state #27

Ref. state #43

Ref. state #3Ref. state #19

Ref. state #11

Reward
rate  
over 

80k steps 
(30 runs)

Sensitivity analysis



CONTROL
EXPERIMENT

α

η = 0.125 η = 2

η = 1

η = 0.5

η = 0.25

Differential Q-learning

Reward
rate  
over 

80k steps 
(30 runs)

α

RVI Q-learning

Ref. state #35

Ref. state #27

Ref. state #43

Ref. state #3Ref. state #19

Ref. state #11

Reward
rate  
over 

80k steps 
(30 runs)

Sensitivity analysis

▸ RVI Q-learning’s performance depends significantly on the choice of the reference state.  

▸ Differential Q-learning’s performance varies only slightly over a wide range of parameter values.
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α

η = 0.125

η = 2 η = 1

η = 0.5
η = 0.25

Differential TD-learning  
(off-policy)

Average
RMSVE 
(TVR) 
over

10k steps 
(30 runs)



CENTERING
MOTIVATION



CENTERING
MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:



CENTERING
MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:

v = vπ + ceSolutions:



CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

  Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:

v = vπ + ceSolutions:



CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

  Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:

  there is only one centered differential value function⟹

v = vπ + ceSolutions:



CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

  Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:

  there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce



CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

  Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:

  there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce
⟹ c = dT

π v



CENTERING
MOTIVATION

 
, 

i.e., the average of the differential value function is zero.

dT
π vπ = 0

  Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′ )] ∀sRecall:

  there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce
⟹ c = dT

π v
r(π) = dT

π rπ
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δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

Ft+1(St) ≐ Ft(St) + βtρtΔt

V̄t+1 ≐ V̄t + κβtρtΔt

Δt ≐ Vt(St) − V̄t + Ft(St+1) − Ft(St)

System 2

  Theorem 3 (sketch)
 
If the previous assumptions hold, then the Centered 
Differential TD-learning algorithm converges a.s.:  

 to ,  to the centered differential value functionR̄t r(π) Vt − V̄t e
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▸  

▸  

▸ 10,000 steps 

▸ 30 runs 

β ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

κ ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:  

▸ RMSVE 

               

             (the usual one) 

∥v − vπ∥dπ
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CONCLUSIONS

▸ The first general proven-convergent off-policy model-free 
control algorithm without reference states

▸ The first proven-convergent off-policy model-free 
prediction algorithm

▸ A general technique to estimate the actual centered value 
function rather than the value function plus an offset
▸ All of our learning algorithms are fully online, and all of our planning 

algorithms are fully incremental

▸ Empirically, the use of the temporal-difference error generally results 
in faster learning in the domains tested, and reliance on a reference 
state generally results in slower learning and risks divergence.
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FUTURE WORK

▸ Extension of these tabular algorithms to function 
approximation

▸ currently working on linear FA, both learning and planning
▸ deadly triad :/  

▸ Extension to SMDPs so they can be used with temporal 
abstractions like options  

▸ Does centering the features stabilize (off-policy) learning?



Paper: https://arxiv.org/abs/2006.16318 
Code:  https://github.com/abhisheknaik96/average-reward-methods 

QUESTIONS?

https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods
https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods
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INTUITION: WHY USING TD ERROR MIGHT BE BETTER

▸ Example 10.8 from the book


