
AMII TEA TIME TALKS 2020

▸ This talk will be recorded. If you want to remain
anonymous, please join the meeting from an
incognito window and keep your video off.

▸ Clarifications can be asked for right away. There is
a Q-A session at the end of the talk for questions
of more technical or philosophical kind.

LEARNING AND PLANNING
IN AVERAGE-REWARD MDPS

Abhishek Naik
abhishek.naik@ualberta.ca

w/ Yi Wan and Rich Sutton

OUTLINE
▸ Contributions

▸ Background

▸ Problem setting

▸ Related work

▸ Algorithms and Experiments

▸ Control

▸ Prediction

▸ Centering

▸ Conclusions and Future Work

CONTRIBUTIONS

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

2. The first proven-convergent off-policy model-free
prediction algorithm

CONTRIBUTIONS

1. The first general proven-convergent off-policy model-
free control algorithm without reference states

2. The first proven-convergent off-policy model-free
prediction algorithm

3. A general technique to estimate the actual centered
value function rather than the value function plus an
offset

BACKGROUND
PROBLEM SETTING

BACKGROUND
▸ Continuing problems

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

r(π) = lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]Reward rate

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

r(π) = lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]

vπ(s) = lim
n→∞

1
n

n

∑
k=1

k

∑
t=1

𝔼[Rt − r(π) |S0 = s, A0:t−1 ∼ π] ∀s

Reward rate

Differential
value function

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

r(π) = lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]

vπ(s) = lim
n→∞

1
n

n

∑
k=1

k

∑
t=1

𝔼[Rt − r(π) |S0 = s, A0:t−1 ∼ π] ∀s

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

Reward rate

Differential
value function

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

r(π) = lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]

vπ(s) = lim
n→∞

1
n

n

∑
k=1

k

∑
t=1

𝔼[Rt − r(π) |S0 = s, A0:t−1 ∼ π] ∀s

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

q(s, a) = ∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + max
a′

q(s′ , a′)] ∀s, a

Reward rate

Differential
value function

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

r(π) = lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]

vπ(s) = lim
n→∞

1
n

n

∑
k=1

k

∑
t=1

𝔼[Rt − r(π) |S0 = s, A0:t−1 ∼ π] ∀s

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

q(s, a) = ∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + max
a′

q(s′ , a′)] ∀s, a

Reward rate

Differential
value function

Bellman
equations

PROBLEM SETTING

BACKGROUND
▸ Continuing problems
▸ Tabular representation
▸ Unichain MDPs

r(π) = lim
n→∞

1
n

n

∑
t=1

𝔼[Rt |S0, A0:t−1 ∼ π]

vπ(s) = lim
n→∞

1
n

n

∑
k=1

k

∑
t=1

𝔼[Rt − r(π) |S0 = s, A0:t−1 ∼ π] ∀s

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

q(s, a) = ∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + max
a′

q(s′ , a′)] ∀s, a

Reward rate

Differential
value function

Bellman
equations

Unique solution for ,
multiple solutions for

r̄
v, q

PROBLEM SETTING

BACKGROUND

Average-reward
learning algorithms Prediction Control

On-policy Average Cost TD (1999) Actor-critic (2000, 2009)

Off-policy Differential TD-learning

R-learning (1993)
Singh (1994)

RVI Q-learning (2001)
Gosavi (2004)

Differential Q-learning

typically not off-policy as a behavioural policy needs to be specified,
value estimates might be unbounded.

RELATED WORK (LEARNING)

BACKGROUND

Average-reward
learning algorithms Prediction Control

On-policy Average Cost TD (1999) Actor-critic (2000, 2009)

Off-policy Differential TD-learning

R-learning (1993)
Singh (1994)

RVI Q-learning (2001)
Gosavi (2004)

Differential Q-learning

typically not off-policy as a behavioural policy needs to be specified,
value estimates might be unbounded.

RELATED WORK (LEARNING)

BACKGROUND

Average-reward
learning algorithms Prediction Control

On-policy Average Cost TD (1999) Actor-critic (2000, 2009)

Off-policy Differential TD-learning

R-learning (1993)
Singh (1994)

RVI Q-learning (2001)
Gosavi (2004)

Differential Q-learning

typically not off-policy as a behavioural policy needs to be specified,
value estimates might be unbounded.

RELATED WORK (LEARNING)

BACKGROUND

Average-reward
learning algorithms Prediction Control

On-policy Average Cost TD (1999) Actor-critic (2000, 2009)

Off-policy Differential TD-learning

R-learning (1993)
Singh (1994)

RVI Q-learning (2001)
Gosavi (2004)

Differential Q-learning

Many algorithms that minimize regret, but:
 (UCRL2, POLITEX, Opt-QL, EE-QL)

typically not off-policy as a behavioural policy needs to be specified,
value estimates might be unbounded.

RELATED WORK (LEARNING)

BACKGROUND

Average-reward
learning algorithms Prediction Control

On-policy Average Cost TD (1999) Actor-critic (2000, 2009)

Off-policy Differential TD-learning

R-learning (1993)
Singh (1994)

RVI Q-learning (2001)
Gosavi (2004)

Differential Q-learning

Many algorithms that minimize regret, but:
 (UCRL2, POLITEX, Opt-QL, EE-QL)

typically not off-policy as a behavioural policy needs to be specified,
value estimates might be unbounded.

RELATED WORK (LEARNING)

BACKGROUND
ALGORITHM MOTIVATION

BACKGROUND

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

ALGORITHM MOTIVATION

BACKGROUND

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

r̄ = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − v(s) + v(s′)] ∀s

ALGORITHM MOTIVATION

BACKGROUND

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

r̄ = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − v(s) + v(s′)] ∀s

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

ALGORITHM MOTIVATION

BACKGROUND

r(π) = ∑
s

dπ(s)∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a) r

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

r̄ = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − v(s) + v(s′)] ∀s

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

ALGORITHM MOTIVATION

BACKGROUND

r(π) = ∑
s

dπ(s)∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a) r

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

r̄ = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − v(s) + v(s′)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

ALGORITHM MOTIVATION

BACKGROUND

r(π) = ∑
s

dπ(s)∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a) r

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − r̄ + v(s′)] ∀s

r̄ = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r − v(s) + v(s′)] ∀s

R̄t+1 = R̄t + β(Rt+1 − R̄t)

R̄t+1 = R̄t + β(Rt+1 − V(St) + V(St+1) − R̄t)

ALGORITHM MOTIVATION

CONTROL
ALGORITHM

CONTROL
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

ALGORITHM

CONTROL
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM

CONTROL
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM

Differential Q-learning

CONTROL
δt ≐ Rt+1 − R̄t + max

a
Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM

Differential Q-learning

 Theorem 1 (sketch)

If 1) the MDP is unichain,
 2) the stepsizes are decreased appropriately,
 3) all the state-action pairs are updated infinite number of times,
 4) the maximum ratio of the update frequencies is finite,

then the Differential Q-learning algorithm converges a.s.:

 to , to a solution of the Bellman optimality equation. R̄t r(π*) Qt

CONTROL

δt ≐ Rt+1 − R̄t + max
a

Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM

CONTROL

δt ≐ Rt+1 − R̄t + max
a

Qt(St+1, a) − Qt(St, At)

Qt+1(St, At) ≐ Qt(St, At) + αtδt

R̄t+1 ≐ R̄t + ηαtδt

ALGORITHM

Qt+1(St, At) = Qt(St, At) + αt(Rt+1−f(Qt)

+ max
a

Qt(St+1, a) − Qt(St, At))

RVI Q-learning

CONTROL

Timesteps

CONTROL
▸ Two-state MDP
▸ state 0 is transient

+1 +2

0.9

0 1

0.1

-10

a

b

Timesteps

CONTROL
▸ Two-state MDP
▸ state 0 is transient

▸ Reference state-action
pair: (0, a)

i.e.,

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

Timesteps

CONTROL
▸ Two-state MDP
▸ state 0 is transient

▸ Reference state-action
pair: (0, a)

i.e.,

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

RVI Q-learning Differential Q-learning

Q(1,a)

Q(0,a)

Q(0,b)

Q(0,b)Q(0,a)

Q(1,a)

Timesteps

(= R̄)

R̄
Value

estimates
(50 runs)

Timesteps Timesteps

CONTROL
▸ Two-state MDP
▸ state 0 is transient

▸ Reference state-action
pair: (0, a)

i.e.,

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

RVI Q-learning Differential Q-learning

Q(1,a)

Q(0,a)

Q(0,b)

Q(0,b)Q(0,a)

Q(1,a)

Timesteps

(= R̄)

R̄
Value

estimates
(50 runs)

Timesteps Timesteps

CONTROL
▸ Two-state MDP
▸ state 0 is transient

▸ Reference state-action
pair: (0, a)

i.e.,

▸

f(Q) = Q(0, a)

α = 0.01, η = 1

+1 +2

0.9

0 1

0.1

-10

a

b

RVI Q-learning diverges if reference state is transient.

RVI Q-learning Differential Q-learning

Q(1,a)

Q(0,a)

Q(0,b)

Q(0,b)Q(0,a)

Q(1,a)

Timesteps

(= R̄)

R̄
Value

estimates
(50 runs)

Timesteps Timesteps

CONTROL
ENVIRONMENT

▸ Access Control Queueing Task

4 18 4 2

CONTROL
ENVIRONMENT

▸ Access Control Queueing Task

4 18 4 2

▸ 10 servers, 4 priorities

▸ p = 0.06

CONTROL
ENVIRONMENT

▸ Access Control Queueing Task

4 18 4 2

6 ft

▸ 10 servers, 4 priorities

▸ p = 0.06

CONTROL
EXPERIMENT

▸

▸

▸

▸ 80,000 steps

▸ 30 runs

▸ Reference states:

▸ 0, 2, 4, 6, 8, 10
free servers

▸ priority 8

▸ accept

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

CONTROL
EXPERIMENT

▸

▸

▸

▸ 80,000 steps

▸ 30 runs

▸ Reference states:

▸ 0, 2, 4, 6, 8, 10
free servers

▸ priority 8

▸ accept

α ∈ {0.0015625, 0.00625, 0.025, 0.1, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

Reward
rate

(30 runs)

Timesteps

Differential Q-learning

RVI Q-learning

CONTROL
EXPERIMENT

α

η = 0.125 η = 2

η = 1

η = 0.5

η = 0.25

Differential Q-learning

Reward
rate
over

80k steps
(30 runs)

α

RVI Q-learning

Ref. state #35

Ref. state #27

Ref. state #43

Ref. state #3Ref. state #19

Ref. state #11

Reward
rate
over

80k steps
(30 runs)

Sensitivity analysis

CONTROL
EXPERIMENT

α

η = 0.125 η = 2

η = 1

η = 0.5

η = 0.25

Differential Q-learning

Reward
rate
over

80k steps
(30 runs)

α

RVI Q-learning

Ref. state #35

Ref. state #27

Ref. state #43

Ref. state #3Ref. state #19

Ref. state #11

Reward
rate
over

80k steps
(30 runs)

Sensitivity analysis

▸ RVI Q-learning’s performance depends significantly on the choice of the reference state.

▸ Differential Q-learning’s performance varies only slightly over a wide range of parameter values.

PREDICTION
ALGORITHM

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

ALGORITHM

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

ALGORITHM

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

ALGORITHM

Differential TD-learning

PREDICTION
δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

ALGORITHM

Differential TD-learning

 Theorem 2 (sketch)
If 1) the MDP is unichain,
 2) the stepsizes are decreased appropriately,
 3) all the states are updated infinite number of times,
 4) the maximum ratio of the update frequencies is finite,
 5) covers all the actions that may choose in all states,

then the Differential TD-learning algorithm converges a.s.:

 to , to a solution of the Bellman equation.

b π

R̄t r(π) Vt

PREDICTION
ALGORITHM

PREDICTION
ALGORITHM

PREDICTION
ALGORITHM

R̄t+1 ≐ R̄t + ηαt(Rt+1 − R̄t)

Average Cost TD-learning

PREDICTION
ALGORITHM

(restricted to on-policy)

R̄t+1 ≐ R̄t + ηαt(Rt+1 − R̄t)

Average Cost TD-learning

PREDICTION
ENVIRONMENT EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸

▸ 10,000 steps

▸ 30 runs

π0 = [0.5, 0.5], b0 = [0.9, 0.1]

α ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1
+1

+2

1

3

2 6

5

0

4 78

PREDICTION
ENVIRONMENT EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸

▸ 10,000 steps

▸ 30 runs

π0 = [0.5, 0.5], b0 = [0.9, 0.1]

α ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:

▸ RMSVE

 (Tsitsiklis and Van Roy, 1999)

inf
c

∥v − (vπ + ce)∥dπ

+1

+2

1

3

2 6

5

0

4 78

PREDICTION
ENVIRONMENT EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸

▸ 10,000 steps

▸ 30 runs

π0 = [0.5, 0.5], b0 = [0.9, 0.1]

α ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

η ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:

▸ RMSVE

 (Tsitsiklis and Van Roy, 1999)

inf
c

∥v − (vπ + ce)∥dπ

+1

+2

1

3

2 6

5

0

4 78

PREDICTION
RESULTS

Differential TD-learning
(off-policy)

Timesteps

Differential TD-learning
(on-policy)

Average Cost TD-learning

RMSVE
(TVR)

(30 runs)

Learning curves

PREDICTION
RESULTS

Sensitivity analysis

α

η = 0.125

η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

η = 0.125

η = 2

η = 1

η = 0.5 η = 0.25

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

PREDICTION
RESULTS

Sensitivity analysis

α

η = 0.125

η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

η = 0.125

η = 2

η = 1

η = 0.5 η = 0.25

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

▸ Differential TD-learning converges faster for a wide range of parameters.

PREDICTION
RESULTS

Sensitivity analysis

α

η = 0.125

η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

η = 0.125

η = 2

η = 1

η = 0.5 η = 0.25

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

▸ Differential TD-learning converges faster for a wide range of parameters.

α

η = 0.125

η = 2 η = 1

η = 0.5
η = 0.25

Differential TD-learning
(off-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

PREDICTION
RESULTS

Sensitivity analysis

α

η = 0.125

η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

η = 0.125

η = 2

η = 1

η = 0.5 η = 0.25

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

▸ Differential TD-learning converges faster for a wide range of parameters.

▸ Differential TD-learning works in the off-policy setting as well.

α

η = 0.125

η = 2 η = 1

η = 0.5
η = 0.25

Differential TD-learning
(off-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

CENTERING
MOTIVATION

CENTERING
MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

CENTERING
MOTIVATION

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

v = vπ + ceSolutions:

CENTERING
MOTIVATION

,

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

v = vπ + ceSolutions:

CENTERING
MOTIVATION

,

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

CENTERING
MOTIVATION

,

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce

CENTERING
MOTIVATION

,

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce
⟹ c = dT

π v

CENTERING
MOTIVATION

,

i.e., the average of the differential value function is zero.

dT
π vπ = 0

 Lemma

v(s) = ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[Rt+1 − r̄ + v(s′)] ∀sRecall:

 there is only one centered differential value function⟹

v = vπ + ceSolutions:

v = vπ + ce
⟹ c = dT

π v
r(π) = dT

π rπ

CENTERING
ALGORITHM

δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

CENTERING
ALGORITHM

δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

Ft+1(St) ≐ Ft(St) + βtρtΔt

V̄t+1 ≐ V̄t + κβtρtΔt

Δt ≐ Vt(St) − V̄t + Ft(St+1) − Ft(St)

System 2

CENTERING
ALGORITHM

δt ≐ Rt+1 − R̄t + Vt(St+1) − Vt(St)

Vt+1(St) ≐ Vt(St) + αtρtδt

R̄t+1 ≐ R̄t + ηαtρtδt

System 1

Ft+1(St) ≐ Ft(St) + βtρtΔt

V̄t+1 ≐ V̄t + κβtρtΔt

Δt ≐ Vt(St) − V̄t + Ft(St+1) − Ft(St)

System 2

 Theorem 3 (sketch)

If the previous assumptions hold, then the Centered
Differential TD-learning algorithm converges a.s.:

 to , to the centered differential value functionR̄t r(π) Vt − V̄t e

CENTERING
ENVIRONMENT EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸ 10,000 steps

▸ 30 runs

β ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

κ ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

+1

+2

1

3

2 6

5

0

4 78

CENTERING
ENVIRONMENT EXPERIMENT

▸ Two Loop Task
▸

▸

▸

▸ 10,000 steps

▸ 30 runs

β ∈ {0.025, 0.05, 0.1, 0.2, 0.4}

κ ∈ {0.125, 0.25, 0.5, 1, 2}

ϵ = 0.1

▸ Evaluation metric:

▸ RMSVE

 (the usual one)

∥v − vπ∥dπ

+1

+2

1

3

2 6

5

0

4 78

CENTERING
RESULTS

RVI Q-learning

Differential
Q-learning

Centered Differential Q-learning

RMSVE
(30 runs)

Timesteps

Learning curves

CENTERING
RESULTS

Average
RMSVE

over
10k steps
(30 runs)

β

Centered Differential Q-learning

κ = 0.125

κ = 2κ = 1

κ = 0.5

κ = 0.25

Sensitivity analysis

CONCLUSIONS

CONCLUSIONS

▸ The first general proven-convergent off-policy model-free
control algorithm without reference states

CONCLUSIONS

▸ The first general proven-convergent off-policy model-free
control algorithm without reference states

▸ The first proven-convergent off-policy model-free
prediction algorithm

CONCLUSIONS

▸ The first general proven-convergent off-policy model-free
control algorithm without reference states

▸ The first proven-convergent off-policy model-free
prediction algorithm

▸ A general technique to estimate the actual centered value
function rather than the value function plus an offset

CONCLUSIONS

▸ The first general proven-convergent off-policy model-free
control algorithm without reference states

▸ The first proven-convergent off-policy model-free
prediction algorithm

▸ A general technique to estimate the actual centered value
function rather than the value function plus an offset
▸ All of our learning algorithms are fully online, and all of our planning

algorithms are fully incremental

CONCLUSIONS

▸ The first general proven-convergent off-policy model-free
control algorithm without reference states

▸ The first proven-convergent off-policy model-free
prediction algorithm

▸ A general technique to estimate the actual centered value
function rather than the value function plus an offset
▸ All of our learning algorithms are fully online, and all of our planning

algorithms are fully incremental

▸ Empirically, the use of the temporal-difference error generally results
in faster learning in the domains tested, and reliance on a reference
state generally results in slower learning and risks divergence.

FUTURE WORK

FUTURE WORK

▸ Extension of these tabular algorithms to function
approximation

FUTURE WORK

▸ Extension of these tabular algorithms to function
approximation

▸ currently working on linear FA, both learning and planning

FUTURE WORK

▸ Extension of these tabular algorithms to function
approximation

▸ currently working on linear FA, both learning and planning
▸ deadly triad :/

FUTURE WORK

▸ Extension of these tabular algorithms to function
approximation

▸ currently working on linear FA, both learning and planning
▸ deadly triad :/

▸ Extension to SMDPs so they can be used with temporal
abstractions like options

FUTURE WORK

▸ Extension of these tabular algorithms to function
approximation

▸ currently working on linear FA, both learning and planning
▸ deadly triad :/

▸ Extension to SMDPs so they can be used with temporal
abstractions like options

▸ Does centering the features stabilize (off-policy) learning?

Paper: https://arxiv.org/abs/2006.16318
Code: https://github.com/abhisheknaik96/average-reward-methods

QUESTIONS?

https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods
https://arxiv.org/abs/2006.16318
https://github.com/abhisheknaik96/average-reward-methods

INTUITION: WHY USING TD ERROR MIGHT BE BETTER

INTUITION: WHY USING TD ERROR MIGHT BE BETTER

▸ Example 10.8 from the book

