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Outline

* Why do we use discounting?
* Why do we have to let it go?

e \What else could we do?
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Why do we love
discounting?

e Mathematical convenience

Assume, without loss of generality, that Qq(x, @) < ®/(1 — v) and that R = 1.

Given ¢ > 0, choose s such that

Linear TD(A) has been proved to converge in the on-policy case if the step-size
parameter is reduced over time according to the usual conditions (2.7). Just as discussed
in Section 9.4, convergence is not to the minimume-error weight vector, but to a nearby
weight vector that depends on A. The bound on solution quality presented in that section
(9.14) can now be generalized to apply for any A. For the continuing discounted case,

— 1 —~A —
VE(ws) < min VE(w). (12.8)
l—v w
1—yA
1—~
A approaches 1, the bound approaches the minimum erro

In practice, however, A =1 is often the poorest choice, a
Figure 12.14.

That is, the asymptotic error is no more than times the smallest possible error. As

Proof: Define the operator L on Q-value functions as

(LO)(s,a) = R(s,a) +y ) _ P& Q) 0, d),

s'eS

for all (s,a) € S x A. We can rewrite Eq. (C.1) as Q(s,a) = (LQ)(s, a), which has a
unique solution if L is contraction with respect to the max norm.
To see that L is a contraction, consider two Q-value functions Q and Q’. We have

ILQ—LQ'| < ymaxy |Q, O@',a)—Q, Q'(s",a’)| <|Q — Q'|, where we have used
Lemma 5, the fact that y < 1, and the non-expansion property of (X). a
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The side-effects
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But the book says
the discount factor doesn't matter, right?
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Additionally, problems of
function approximation

Remember, the policy improvement theorem does not hold
in the function-approximation setting.

In the tabular setting, we could compare two policies by a
state-wise comparison of the value function.

In the function-approximation setting, this cannot be done.
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e The choice of discount factor matters.

* We don't have methods that can feasibly follow a

discounted objective in which the discount factor does not
matter.

* |nthe function-approximation setting, we don't even have a
decent way to compare/order policies.



A viable alternative —
The Average Reward Formulation



A viable alternative —
The Average Reward Formulation

* Objective:



A viable alternative —
The Average Reward Formulation

* Objective:
|

h— oo



A viable alternative —
The Average Reward Formulation

* Objective:
|

h— oo

e Differential return:



A viable alternative —
The Average Reward Formulation

* Objective:
|

h— 00
o Differential return:
G,=R, —r(m)+ R »,—1r(m)+ ...



A viable alternative —
The Average Reward Formulation

* Objective:
|

h— 00
o Differential return:
G,=R, —r(m)+ R »,—1r(m)+ ...

e Differential value function:



A viable alternative —
The Average Reward Formulation

* Objective:
|

h— 00
o Differential return:
G,=R, —r(m)+ R »,—1r(m)+ ...

e Differential value function:
v.(s) =LE_[G,|S, = s]
=) (als) ) p(s'.r]s.a)[r— r(m) + v,(s) = v,(s)]



A viable alternative —
The Average Reward Formulation

* Objective:
|

h— 00
o Differential return:
G,=R, —r(m)+ R »,—1r(m)+ ...

e Differential value function:
v.(s) =LE_[G,|S, = s]
=) (als) ) p(s'.r]s.a)[r— r(m) + v,(s) = v,(s)]



A viable alternative —
The Average Reward Formulation

* Objective:

1
J(O) = r(r) = Iim Z[Eﬂ[RHl +R_ ,+...+R_,;]

h— 00
e Differential return:
G,=R, —r(m)+ R »,—1r(m)+ ...

e Differential value function:
v.(s) =LE_[G,|S, = s]
=) (als) ) p(s'.r]s.a)[r— r(m) + v,(s) = v,(s)]

Can compare the average reward 7(x)
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* Unclear how to perform planning, off-policy learning,
use options, etc...
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e Under-studied!

* Very few algorithms, with no comprehensive studies of the
strengths/weaknesses, assumptions, etc.

* Unclear how to perform planning, off-policy learning,
use options, etc...

e No suite of domains

* Need to build one for testing our algorithms systematically.



IELCEWEVE

* |n continuing problems, discounting doesnt make sense.

* The Average Reward formulation seems to be a viable
alternative, with so many open problems!



Thank youl!

(More) Questions?



Stretch slides



What are some interesting
continuing domains?

* |[nventory control

e (Clinical trials

* Robot navigation

* Access control / queuing systems

e Job scheduling, Packet routing



But discounting works,
right...

* |nepisodic domains where actions don't really have long-
term effects.

* For Chess and Go, AlphaGo did not use discounting.



Abstract

In continuing problems, a discount factor is commonly used
to ensure that the potentially-infinite return per state is a finite
number. In this talk, we will discuss how this problem setting

IS problematic, and how the average reward formulation is a
viable alternative.



